
MagicBeans: a Platform for Deploying Plugin
Components

Robert Chatley, Susan Eisenbach, and Jeff Magee

Dept of Computing, Imperial College London,
180 Queensgate, London, SW7 2AZ, UK�
rbc,sue,jnm � @doc.ic.ac.uk

Abstract. Plugins are optional components which can be used to enable the dy-
namic construction of flexible and complex systems, passing as much of the con-
figuration management effort as possible to the system rather than the user, al-
lowing graceful upgrading of systems over time without stopping and restarting.
Using plugins as a mechanism for evolving applications is appealing, but current
implementations have limited functionality. In this paper we present a framework
that supports the construction and evolution of applications with a plugin archi-
tecture.

1 Introduction

Almost all software will need to go through some form of evolution over the course of
its lifetime to keep pace with changes in requirements and to fix bugs and problems with
the software as they are discovered. Maintaining systems where components have been
deployed is a challenging problem, especially if different configurations of components
are deployed at different sites.

Traditionally, performing upgrades, fixes or reconfigurations of a software system
has required either recompilation of the source code or at least stopping and restarting
the system. High availability systems have high costs and risks associated with shutting
them down for any period of time [18]. In other situations, although continuous avail-
ability may not be safety or business critical, it is simply inconvenient to interrupt the
execution of a piece of software in order to perform an upgrade.

It is important to be able to cater for the evolution of systems in response to changes
in requirements that were not known at the initial design time (unanticipated software
evolution). There have been a number of attempts at solving these problems at the levels
of evolving methods and classes [5, 2], components [13] and services [19]. In this paper
we consider an approach to software evolution at the architectural level, in terms of
plugin components.

Oreizy et al [18] identify three types of architectural change that are desirable at
runtime: component addition, component removal and component replacement. It is
possible to engineer a generalised and flexible plugin architecture which will allow all
of these changes to be made at runtime.

The benefits of building software out of a number of modules have long been recog-
nised. Encapsulating certain functionality in modules and exposing an interface evolved

into component oriented software development [3]. An important difference between
plugin based architectures and other component based architectures is that plugins are
optional rather than required components. The system should run equally well regard-
less of whether or not plugin components have been added. Plugins allow the possibility
of easily adding components to a working system after it has been deployed, adding ex-
tra functionality as it is required. Plugins can be used to address the following issues:

– the need to extend the functionality of a system,
– the decomposition of large systems so that only the software required in a particular

situation is loaded,
– the upgrading of long-running applications without restarting,
– incorporating extensions developed by third parties.

Plugin systems have previously been developed to address each of these different
situations individually, but the architectures designed have generally been quite specifi-
cally targeted and therefore limited. Either there are constraints on what can be added,
or creating extensions requires a lot of work on behalf of the developer, writing archi-
tectural definitions that describe how components can be combined [17]. In this paper
we describe a more generalised and flexible plugin architecture, not requiring the con-
nections between components to be explicitly stated.

In the remainder of this paper we describe the implementation of a platform for
managing plugin-based applications, which we call MagicBeans. We highlight some
technical issues of particular interest, and present a case study of the system in use.
Finally we discuss related work and future directions.

2 The Software

We have implemented a generalised infrastructure for our plugin architecture, which
we call MagicBeans. In this section we describe the requirements and details of the
implementation. We also present an example application that runs on top of the Mag-
icBeans platform. This application is a large piece of analysis software, which has been
extended in various ways through plugin components.

2.1 Requirements

To enable the evolution of software systems through the addition, removal and coordi-
nation of plugin components at runtime, we require some kind of runtime framework to
be built. We have a number of functional requirements for the system.

The framework should form a platform on top of which an application can run.
The platform should launch the application, and from then on manage the configuration
of plugin components. It should work as automatically as possible, so that the right
interfaces and classes from each component are detected and loaded, and components
are matched and bound appropriately by the framework. It should be possible to plug
components together in chains and other configurations. The configuration should be
managed entirely by the platform.

Application Plugin

MagicBeans platform

Adder

Fig. 1. Platform architecture managing a two component application

Using the plugin platform should have minimal impact on the developer or the user
(or system administrator). The developer should not be forced to design their software
in a particular way, to make extensive calls to an API, or to write complex descriptions
of their components in any form of architecture description language. There should
be no particular installation procedure that needs to be gone through in order to add
a component, simply allowing the platform to become aware of the new component’s
location should be enough.

The mechanism by which new components are introduced to the system should not
be prescribed by the platform. It should be possible to adapt easily the framework to al-
low components to be added in new ways, for instance: located by a user, or discovered
in the filesystem or network, etc.

2.2 Implementing Plugin Addition

MagicBeans is implemented in Java, and allows a system to be composed from a set
of components, each of which is comprised of a set of Java classes and other resources
(such as graphics files) stored in a Jar archive.

When a new plugin is added to the system, the platform searches through the classes
and interfaces present in the new component’s Jar file to determine what services are
provided and required by the new component, and how it can be connected to the com-
ponents currently in the system.

A class signifies that it provides a service by declaring that it implements an inter-
face. In the example below, we show an AirBrush component that might be added as an
extension to a paint program. The AirBrush class implements the GraphicsTool
interface. It can be added to any application that can accept a GraphicsTool as a
plugin.

interface GraphicsTool {

void draw(int x, int y, Canvas c);
}

class AirBrush implements GraphicsTool {

void draw(int x, int y, Canvas c) {

//implement drawing code here
}

}

A component that can accept a plugin has a slightly more complex design. Here we
show a paint program that can accept and use our GraphicsTool plugin. For a com-
ponent to use the services provided by a plugin, it must obtain a reference to an object
from the plugin. This is achieved through a notification mechanism. The mechanism
is based on the Observer pattern [6]. Any object can register with the platform to be
notified when a new binding is made which is relevant to it.

To register as an observer, an object calls the following (static) method in the
PluginManager class:

PluginManager.getInstance().addObserver(this);

This only registers that an object is interested in new plugins, but does not specify
the plugin type. An object signifies that it can accept a plugin of a certain type by
declaring a method pluginAdded(...) that takes a parameter of that type, in this
case GraphicsTool

When the AirBrush plugin is added, observing objects with a pluginAdded()
method that can take a GraphicsTool as their parameter are notified. This is done by
calling the pluginAdded()method, passing a reference to the new GraphicsTool
object, through which methods can be called. It is normal to assign this reference to a
field of the object or add it to a collection within pluginAdded() so that the ref-
erence is maintained. In the example below, the new tool is added to a list of all the
available tools.

Classes can define multiple pluginAdded() methods with different parameter
types, so that they can accept several different plugins of different types.

class PaintProgram {

List tools;
GraphicsTool current;

PaintProgram() {

PluginManager.getInstance().addObserver(this);
}

void pluginAdded(GraphicsTool gt) {

tools.add(gt);
}

void redrawScreen() {

for (Iterator i = tools.iterator() ; i.hasNext() ;) {

drawButton((GraphicsTool)i.next());
}

...

if (current != null) {current.draw(x, y, o_canvas);}

...
}

}

For each component, the plugin manager iterates through all of the classes con-
tained inside the Jar file, checking each for implemented interfaces (provisions) and
pluginAdded() methods, and finding all the pairs that are compatible. For a class
to be compatible with an interface, it must be a non-abstract subtype of that interface.
The matching process is performed using Java’s reflection [8], custom loading [14] and
dynamic linking features, which allow classes to be inspected at runtime. If a match is
found, a binding between the two components is added to the system. The class in ques-
tion is instantiated (if it has not been already), and the notification process is triggered.

There are various mechanisms through which plugins could be introduced to the
system, and which is chosen depends on the developer and the application. Possibilities
include that the user initiates the loading of plugins by selecting them from a menu,
or locating them in the filesystem; that the application monitors a certain filesystem
location for new plugins; or that there is some sort of network discovery mechanism that
triggers events, in the manner of Sun’s Jini [12]. MagicBeans does not prescribe the use
of any of these. It uses a known filesystem location as a bootstrap, but components that
discover new plugins can be added to the platform in the form of plugin components
themselves (the platform manages its own configuration as well as that of the target
application) which implement the Adder interface. Figure 1 shows an example of the
platform running, managing an application extended with one plugin, with an Adder
component plugged in to the platform itself. Each Adder is run in its own thread, so
different types can operate concurrently. Whenever an Adder becomes aware of a new
plugin, it informs the platform and the platform carries out the binding process. We have
written example applications that load plugins from a known filesystem location, and
that allow the user to load plugins manually using a standard “open file” dialog box.

2.3 Plugin Removal

As well as adding new plugins to add to the functionality of a system over time, it may
be desirable to remove components (to reclaim resources when certain functionality is
no longer needed) or to upgrade components by replacing them with a newer version.
Together these form the three types of evolution identified in [18].

Removal is not as straightforward as addition. In order to allow for the removal
of components, we need to address the issue of how to revoke the bindings that were
made when a component was added. The platform could remove any bindings involving
the component concerned from its representation of what is bound to what, but when
the component was added and bound, the classes implementing the relevant interfaces
were instantiated, and references to them passed to the components to which they were
connected. These components will retain these references and may continue to call
methods on the objects after the platform has removed the bindings. It is not possible
to force all of the objects in the system to release their references. If the motivation for
removing the plugin was to release resources then this objective will not be met.

We can have the platform inform any components concerned when a plugin is about
to be removed. This is done using the same observer notification mechanism as we use
when a component is added, but calling a different method pluginRemoved(). Any
references to the plugin or resources the component provides should then be released.
For example:

class PaintProgram {

...

void pluginRemoved(GraphicsTool gt) {

tools.remove(gt);
}

}

When all of the notifications have been performed, the bindings can be removed.
However, this technique relies on the cooperation of the plugins. We cannot force ref-
erences to be released, only request that components release them. Components could
be programmed simply to ignore notifications (or may not even register to be notified)
and in this case will continue to retain their references after a binding is removed.

As a solution to this problem, in addition to using the notifiation mechanism, when
classes providing services are initially instantiated, instead of providing another com-
ponent with a reference directly to that object, the reference passed is to a proxy. All
the references to the objects from the plugin are then under the control of the platform,
as the platform maintains a reference to each proxy. When a component is removed, the
reference from each proxy to the object that provides its implementation can be nulli-
fied, or pointed at a dummy implementation. In this way we can force that resources
are released. In the event that at component does try to access a plugin that has been
removed, we can throw a suitable exception.

In order to provide this level of indirection, we use Java’s Proxy class (from the
standard API) to create a proxy object for each binding created. The Proxy class allows

us to create an object dynamically that implements a given interface (or interfaces), but
which, when a method is called, delegates to a given InvocationHandler which
actually implements the method or passes the call on to another object. Using this mech-
anism, the implementation of the method can be switched or removed at runtime simply
by reassigning object references. This gives us exactly what we need. When a plugin
is removed we can nullify the reference to the delegate. When a method is called we
check for the presence of a delegate, and if it has been removed throw a suitable excep-
tion back to the caller.

Another major concern is deciding when it is safe to remove a component. For
instance, it will be very difficult to replace a component if the system is currently exe-
cuting a method from a class belonging to that component. This problem is solved by
synchronising the methods in the proxy object, so that a component cannot be removed
whilst another object is in the midst of executing a method supplied by this component.

2.4 Plugin Replacement

We can perform plugin replacement in order to effect an upgrade of a system. However,
before removing the old component, checks must be made to ensure that the new version
is compatible.

A safe criterion for compatability of components might be that the new one must
provide at least the services that the one it is replacing provides, and must not require
more from the rest of the system [22]. In this way we can compare two components in
isolation to decide whether one is a suitable substitute for the other.

However, in the case of plugin systems, there are a few more subtleties to be con-
sidered. With plugin systems, components that are used by other components are not
strictly required but optional extensions that may be accepted. Therefore, in comparing
components for compatability we do not need to consider the case of what the compo-
nents require, only what they provide. It is only this that is critical to the success of the
upgrade.

Also, as we are performing upgrades at runtime, during system operation, we have
more information than we would have if we just had the components in isolation. At
any point the MagicBeans platform knows the current structure of the system, and so
knows which of the interfaces that a plugin provides are actually being used (those for
which a binding has been created during the addition process). We can therefore say
that new component is safe to replace another if it provides at least the same services as
those that are provided by the old one, and are currently being used.

For example, we might have a component Brush which contains classes that imple-
ment GraphicsTool and Help. We can use this plugin with a graphics application
as was shown previously, which will use the GraphicsTool interface. We could also
use it with an application that allowed help to be browsed, or an application that com-
bined both of these features. However, let us consider the case where we are using the
Brush with our simple paint application. In this case, only the GraphicsTool inter-
face will be used.

We may now write or purchase a new tool, say a SuperBrush. We want to upgrade
the system to use this instead of the Brush. The SuperBrush does not provide the Help
interface, but its implementation of GraphicsTool is far superior. If we use our

first criterion for deciding compatability, then we will not be able to upgrade from a
Brush to a SuperBrush, as SuperBrush does not provide all the services that Brush does.
However, if we use the second criterion, then in the context of the simple paint appli-
cation, SuperBrush provides all the services that are being used from Brush, (i.e. just
GraphicsTool) and so we can perform the upgrade.

Replacement could be done by first removing the old component, and subsequently
adding the new one, using the mechanisms as described above. However, due to the
presence of the proxy objects which allow us to manange the references between plu-
gins, we can swap the object that implements a service, without having to notify the
client that is using it. In this way it is possible to effect a seamless upgrade.

3 Technical Innovations

3.1 BackDatedObserver

There are some cases in which the notification system described above has limitations.
If, on adding a new plugin, multiple bindings are formed, it may be the case that bind-
ings are created before the objects that will observe the creation of these bindings have
been initialised and registered as observers.

For example, consider the case where we have two components, each providing one
service to and accepting one service from the other. If component A is already part
of the system, and component B is added, a binding may be formed connecting B’s
requirement with A’s provision. Currently no observers from B have registered, and so
none are informed of the new binding.

A second binding is then formed between B’s provision and A’s requirement. At
this point, a class from B is instantiated. A reference to this object is passed to any
observers in A. During the creation of the object from B, the constructor is run, and
the object registers as an observer with the PluginManager. As the registration is too
late, although the PluginManager matched two pairs of interfaces to create bindings,
the situation that results is that A holds a reference to B, but not the other way around.

To solve this problem, we introduce the notion of a BackDatedObserver. This is an
observer which, on registering, has the opportunity to catch up on previous events that
occurred before it registered, but which are relevant to it. In the last example, having
the observers register as BackDatedObservers would mean that the observer from B
would be passed a reference to the object from A as soon as it registers, and it would be
possible to call methods in both directions.

Implementing this variation on the traditional observer pattern requires that the par-
ticipant that performs the notification keeps a history of past events, so that it can for-
ward them to new observers when they register.

3.2 Distinguishing components

In order to be able to tell which observers need to be notified about which new bindings,
it is necessary to maintain a record of which objects come from which components.
That is to say, which component contains the class from which the object was created.

This could be done by calling a special factory method that would create objects and
update the relevant data structures. However, such a scheme would impinge greatly on
the natural style of programming. It would be necessary for the programmer to write
something like:

A myA = (A)ObjectFactory.create(‘‘A’’);

instead of the usual

A myA = new A();

There are a number of problems with this. Firstly, it is a lot more cumbersome to
write. Secondly, it removes static type safety. Thirdly, we cannot force programmers to
use this mechanism, and no information will be recorded about any objects created in
the normal style.

In a language that allows operator overloading (for example C++), we could im-
plement a new operator that performs the appropriate record keeping, allowing object
creation using the normal syntax. However, operator overloading is not available in
Java.

The solution to this problem that has been adopted utilises the fact that in Java
every object created holds a reference to its class, and every class in turn to its class
loader. By associating a separate class loader with each plugin component, we can group
objects into components on the basis of their class loaders. In fact, we made the class
Component, which manages all of the information relevant to a particular plugin, a
subclass of java.lang.ClassLoader, so that for any object, calling

getClass().getClassLoader()

will return a reference to its Component.

3.3 Multi-methods

As all of the objects that come from plugin components may be of types that are un-
known to the MagicBeans platform, objects are created using reflection, and the refer-
ences that are used to point to them have the static type Object, which is the ultimate
superclass of all classes in Java.

If the PluginManager were to attempt to call one of the pluginAdded()methods
in a component, it would pass a parameter with static type Object and the Java runtime
would require that the method being called took a parameter of type Object even if
the dynamic type of the parameter was something more specific.

In fact, during the compilation of the plugin component, the Java compiler will com-
plain that there is no method pluginAdded(Object o). If the developer adds
this method, this is the one that will be called at runtime, regardless of the dynamic type
of the parameter passed. The reason for this is that methods in Java are only dispatched
dynamically on the type of the receiver, not that of the parameters [7].

This causes a problem as we wish to use pluginAdded()methods with different
parameter types to specify the types of plugin that a component can accept.

In the implementation of MagicBeans we have overcome this problem by using
reflection to dispatch certain methods dynamically on the parameter types as well as
the receiver. This is often called “double-dispatch” or “multi-methods” [4].

We created a class MultiMethodwhich has a static method dispatch()which
takes as parameters the intended receiver, the name of the method and the parameter.

MultiMethod.dispatch(receiver , ‘‘pluginAdded’’ , parameter);

Reflection is used to search through the methods of the given receiver to find one
with the given name and a formal parameter type that matches that of the parameter
passed as closely as possible. This method is then invoked, again using the reflection
mechanism. Double dispatch is only used when calling the pluginAdded() and
pluginRemoved()methods, not for any subsequent calls between components. This
means that the performance penalty incurred by calling methods in this way is kept to
a minimum.

4 Case study : Extensible LTSA

The Labelled Transition System Analyser (LTSA) [10] is a Java application that allows
systems to be modelled as labelled transition systems. These models can be checked
for various properties, making sure that either nothing bad happens (safety) or that
eventually something good happens (liveness). The core functionality of LTSA is to
take textual input in the form of the FSP process calculus, to compile this into state
models which can be displayed graphically and animated, and to check properties of
these models.

On top of this core functionality, various extensions have been built, notably to allow
more illustrative animations of the behaviour of models; to allow FSP to be synthesised
from graphical Message Sequence Charts (MSCs) representing scenarios [23] so that
properties of these scenarios can be analysed; to harness the sructural information given
by the Darwin architecture definition language (ADL) in generating models; and to pro-
vide a facility for interacting with behaviour models by means of clicking items on web
pages served over the internet to a web browser [21]. The various extensions have been
implemented as plugins using MagicBeans. Figure 2 shows the LTSA tool running with
three plugins connected. The console windows shows the output from MagicBeans as
it loaded and bound the plugin components. The MSC and ADL plugins interact di-
rectly if both are present. Figure 3 shows the different classes and interfaces in the
different components of LTSA. The grey boxes represent components which contain
classes and interfaces. These are all loaded and managed by the MagicBeans platform
(not pictured). The dashed arrows signify implementation of an interface, so the class
MSCSpec implements the FSPSource interface. These interface implementations form
the basis for the bindings between the components. For example, the ADL Editor can
use an FSPSource, and an implementation of this is provided by the MSCPlugin com-
ponent, so when both of these plugins are present, a binding is formed between them.

More extensions for LTSA are currently in development and the use of the plugin
framework has made it very easy to for different parties to develop new functionality
and integrate it with the tool.

Fig. 2. LTSA tool running with plugins

The aim of using the plugin architecture was that rather than having one monolithic
tool which combined all of the above functionality, the different extensions could be
encapsulated in separate modules, and only the modules that the user required would be
loaded. This selection of features should be able to be done in a dynamic way, so that
no changes to the source code need to be made in order to add or remove features. The
use of the MagicBeans platform provides this.

By providing a standard interface for LTSA plugins, the core of the application can
use any extensions that the user requires. To use a new plugin, all that the user has to do
is to drop the relevant Jar file into a certain directory. The application interrogates each
plugin to find out whether it provides certain types of GUI features (menus, tool bar
buttons etc) that should be added to main application’s user interface. The plugins then
respond to the user clicking on the buttons or menus by executing code from handler
classes inside the relevant extension component.

5 Related Work

5.1 JavaBeans

JavaBeans [11] is Sun’s original component technology for Java. Beans are formed
by packaging classes and other resources into Jar files, but the focus is on combining
and customising Beans to create an application using a graphical builder tool. They

MSCPlugin

FSPSource

ADL Editor

MSCSpec

LTSAPlugin

Main

Model
Checker

LTSA
MSC Editor

Darwin Plugin

*

Fig. 3. Class diagram showing classes in different plugins

are commonly used for combining user interface components to create a complete GUI.
The technology that we have presented here differs from this approach in that we intend
the coordination of components to form applications to be as transparent as possible,
and to be performed in a way that is reactive to the other components that have already
been deployed in the system.

5.2 OSGi and Gravity

The Open Services Gateway initiative (OSGi) [20] Service Platform is a specification
for a framework that supports the dynamic composition of services. An implementation
of this specification can be integrated into applications to provide a plugin or extension
mechanism. OSGi compliant applications work by managing “bundles” that are regis-
tered with a platform. Clients can query the OSGi registry for components that provide
a certain service.

Gravity is an application that uses Oscar [9], an implementation of OSGi, to allow
applications to be built dynamically from components that may vary in their availability.
In order to use a bundle with Gravity, the component needs to contain an XML descrip-
tion of its provided and required services, which is not the case with MagicBeans.

5.3 Java Applets

Java applets [1] allow modules of code to be dynamically downloaded and run inside
a web browser. The dynamic linking and loading of classes that is possible with Java
allows extra code, extending the available functionality, to be loaded at any time.

A Java program can be made into an applet by making the main class extend
java.applet.Applet and following a few conventions. The name of this main
class and the location from where the code is to be loaded are included in the HTML of
a web page. A Java enabled browser can then load and instantiate this class.

The applet concept has proved useful in the relatively constrained environment of a
web browser, but it does not provide a generalised mechanism for creating extensible
applications. As all applets must extend the provided Applet class, it is not possible to
have an applet which has any other class as its parent (as Java has single inheritance).

5.4 Lightweight Application Development

In [15] Mayer et al present the plugin concept as a design pattern (in the style of [6])
and give an example implementation in Java. The architecture described in the design
pattern is similar to that used by MagicBeans. It includes a plugin manager that loads
classes and identifies those that implement an interface known to the main application.

Their work does allow for one application to be extended with multiple plugins,
possibly with differing interfaces, but makes no mention of adding plugins to other
plugins.

The plugin mechanism is described in terms of finding classes to add to the system,
where we work in terms of components. Although our components do contain sets of
classes (along with other resources such as graphics), it is the component as a whole
that is added to provide the extension to the system.

5.5 ActiveX

ActiveX is a technology developed by Microsoft in the 1990’s. ActiveX controls are
reusable software components that can add specialised functionality to web sites, desk-
top applications, and development tools [16]. They are primarily designed for creating
user-interface elements that can be added to container applications. There is no standard
mechanism for establishing peer-to-peer connections between ActiveX components,
only between the container and the control. This means that the configurations that
can be created are a lot less flexible than what can be achieved using the MagicBeans
framework.

5.6 Eclipse

The Eclipse Platform [17] is designed for building integrated development environ-
ments. It is built on a mechanism for discovering, integrating and running modules
which it calls plugins.

Any plugin is free to define new extension points and to provide new APIs for other
plugins to use. Plugins can extend the functionality of other plugins as well as extending
the kernel. This provides flexibility to create more complex configurations.

Each plugin has to include a manifest file (XML) providing a detailed description
of its interconnections to other plugins. The developer needs to know the names of the
extension points present in other plugins in order to create a connection with them.

With the MagicBeans technology, the actual Java interfaces implemented by classes in
plugins are interrogated using reflection, and this information is used to organise and
connect components.

On start-up, the Eclipse Platform Runtime discovers the set of available plugins,
reads their manifests and builds an in-memory plugin registry. Plugins cannot be added
after start-up. This is a limitation as it is often desirable to add functionality to a running
program without having to stop and restart it. Version 3.0 of Eclipse will address this
by using an OSGi implementation to manage plugins.

6 Conclusions

We have presented a system of plugin components that allows flexible applications to
be constructed by deploying sets of components that are combined to form a system.
Functionality can be added to an application over time, as it is required or becomes
available, by deploying a new component alongside those that are already in use by the
system. Components that are no longer needed can be removed, allowing resources to
be reclaimed, and components can be replaced when later versions become available.

We described MagicBeans, a platform supporting self-assembling systems of plu-
gin components, written in Java. The platform allows applications to be constructed
and reconfigured dynamically at runtime. It allows the architecture of an application to
be altered by adding, removing or replacing components, without halting execution or
having to restart the system.

We showed how to write a program that uses the MagicBeans framework to allow
components to be be added and removed dynamically, demonstrating that the extra
code that a developer needs to write to take advantage of the system is minimal. We
also discussed some of the technical challenges involved in implementing the platform.

Future work in this area could address the problems of coordinating components
deployed across a distributed environment, or look at the possibility of expressing some
sort of structural constraints or goals for the system, so that when components are as-
sembled, not only are interfaces matched, but a certain structure, say a ring, is main-
tained. This could involve inserting components between components that are already
connected, which is not something that our system currently allows.

7 Acknowledgments

We would like to acknowledge our colleagues in the Distributed Software Engineering
group and the SLURP group at Imperial College London for their helpful discussions.
We would also like to acknowledge the support of the European Union under grant
STATUS (IST-2001-32298).

References

1. Applets. Technical report, Sun Microsystems, Inc., java.sun.com/applets/, 1995-2003.
2. G. Bierman, M. Hicks, P. Sewell, and G. Stoyle. Formalising dynamic software updating. In

Second International Workshop on Unanticipated Software Evolution at ETAPS ’03, 2003.

3. C. Szyperski. Component Software: Beyond Object-Oriented Programming. Addison-
Wesley Pub Co, 1997.

4. C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein. MultiJava: Modular open classes
and symmetric multiple dispatch for Java. In OOPSLA 2000 Conference on Object-Oriented
Programming, Systems, Languages, and Applications, Minneapolis, Minnesota, volume
35(10), pages 130–145, 2000.

5. M. Dmitriev. HotSwap Client Tool. Technical report, Sun Microsystems, Inc.,
www.experimentalstuff.com/Technologies/ HotSwapTool/index.html, 2002-2003.

6. E. Gamma, R. Helm, R. Johnson, John Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Pub Co, 1995.

7. J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification. Addison
Wesley, 2 edition, June 2000.

8. D. Green. The Reflection API. Technical report, Sun Microsystems, Inc.,
http://java.sun.com/docs/books/tutorial/reflect/, 1997-2001.

9. R. S. Hall. Oscar. Technical report, ungoverned.org, oscar-osgi.sourceforge.net, 2003.
10. J. Magee and J. Kramer. Concurrency – State Models and Java Programs. John Wiley �

Sons, 1999.
11. Javabeans. The Only Component Architecture for Java Technology. Technical report, Sun

Microsystems, Inc., java.sun.com/products/javabeans/, 1997.
12. JINI. DJ - Discovery and Join. Technical report, Sun Microsystems, Inc.,

wwws.sun.com/software/jini/specs/jini1.2html/discovery-spec.html, 1997-2001.
13. J. Kramer and J. Magee. The evolving philosophers problem: Dynamic change management.

IEEE TSE, 16(11):1293–1306, November 1990.
14. S. Liang and G. Bracha. Dynamic class loading in the Java virtual machine. In Conference on

Object-oriented programming, systems, languages, and applications (OOPSLA’98), pages
36–44, 1998.

15. J. Mayer, I. Melzer, and F. Schweiggert. Lightweight plug-in-based application development,
2002.

16. Microsoft Corporation. How to Write and Use ActiveX Con-
trols for Windows CE 2.1. Technical report, Microsoft Devel-
oper Network, http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnce21/html/activexce.asp, 1999.

17. Object Technology International, Inc. Eclipse Platform Technical Overview. Technical re-
port, IBM, www.eclipse.org/whitepapers/eclipse-overview.pdf, July 2001.

18. P. Oriezy, N. Medvidovic, and R. Taylor. Architecture-based runtime software evolution. In
ICSE ’98, 1998.

19. M. Oriol. Luckyj: an asynchronous evolution platform for component-based applications. In
Second International Workshop on Unanticipated Software Evolution at ETAPS ’03, 2003.

20. OSGi. Open Services Gateway initiative specification. Technical report, OSGi,
http://www.osgi.org, 2001.

21. R. Chatley, J. Kramer, J. Magee and S. Uchitel. Model-based Simulation of Web Applica-
tions for Usability Assessment. In Bridging the Gaps Between Software Engineering and
Human-Computer Interaction, May 2003.

22. S. Eisenbach, C. Sadler and S. Shaikh. Evolution of Distributed Java Programs. In IFIP/ACM
Working Conference on Component Deployment, volume 2370 of LNCS. Springer-Verlag,
June 2002.

23. S. Uchitel, R. Chatley, J. Kramer and J. Magee. LTSA-MSC: Tool Support for Behaviour
Model Elaboration Using Implied Scenarios. In Proc. of TACAS 2003. LNCS, April 2003.

