
Predictable Dynamic Plugin Systems

R. Chatley, S. Eisenbach, J. Kramer, J. Magee, and S. Uchitel

Dept of Computing, Imperial College London,
180 Queensgate, London, SW7 2AZ, UK
{rbc,sue,jk,jnm,su2}@doc.ic.ac.uk

Abstract. To be able to build systems by composing a variety of com-
ponents dynamically, adding and removing as required, is desirable. Un-
fortunately systems with evolving architectures are prone to behaving in
a surprising manner. In this paper we show how it is possible to generate
a snapshot of the structure of a running application, and how this can be
combined with behavioural specifications for components to check com-
patability and adherence to system properties. By modelling both the
structure and the behaviour, before altering an existing system, we show
how dynamic compositional systems may be put together in a predictable
manner.

1 Introduction

There is a growing need for software systems to be extensible, as changes in
requirements are discovered and fulfilled over time. In many cases it is inconve-
nient or costly to stop and restart an application in order to perform a change
in configuration. By using a plugin architecture we can construct systems from
combinations of components, with the architecture changing dynamically over
time.

Szyperski describes components as units of composition that may be subject
to composition by third parties [4]. Plugin architectures fit this description well.
Plugins are components that can optionally be added to an existing system at
runtime to extend its functionality. Each plugin may expose certain interfaces
that it provides and requires [10]. By matching provisions to requirements, we can
identify components that can be connected. By dynamically creating bindings
between these components, calls can be made from a component requiring a
service to another component that provides that service.

In an environment where systems can change through incremental addition
and removal of components, it is desirable to be able to check for the preserva-
tion of properties as systems evolve. A group of components may be interacting
correctly, but introducing a new component to the system may cause problems.
Before adding new components, we would like to be able to ensure that unde-
sirable behaviour will not occur, in order that configurations that might violate
certain properties are not realised. Examples of such properties might be free-
dom from deadlock, liveness, or ensuring that an error state is never reached.

2 R. Chatley, S. Eisenbach, J. Kramer, J. Magee, and S. Uchitel

Our approach is to build and check a model that contains both structural and
behavioural information.

The structural information consists of interfaces and bindings, which define
sets of shared actions through which components can interact. However, they
do not provide any information about the order in which these actions will
be performed. This means that although we may be able to reason about the
structure of systems of components based on this information, we are unable to
reason in any way about their behaviour.

The behavioural information comes from the developer of a component, who
can supply a specification of the way that component behaves (it is impossible to
ascertain the programmer’s intentions automatically). However, as components
from different vendors can be combined in any number of different possible con-
figurations, there is no way of writing a definitive model of how all different
combinations will behave. To produce a model of the behaviour of the complete
system requires composing the behavioural models for all of the components in a
particular configuration in parallel, and ensuring that components are correctly
synchronised where their interfaces are bound together. In this paper we show
how such a model can be constructed, and hence the system’s behaviour can be
analysed.

As systems of plugin components can have components dynamically added
(and removed) over time, and because one of the ideas of plugin components is
to minimise the effort involved in configuring and administering a system, it is
desirable that system models be generated and tested automatically. We show
how our structural and behavioural specification techniques can be used for this,
and how our tools can generate and analyse models automatically.

In the remainder of this paper we describe techniques for modelling the struc-
ture and behaviour of systems, and go on to discuss how the features of the plugin
system map to the concepts used in these modelling techniques. We describe how
models can be automatically generated from implemented components, present
an example, and finally discuss related and future work.

2 Background

2.1 Plugin Framework

We have implemented a framework for plugin components, which we call Mag-
icBeans, that can examine the compiled code of a Java component and auto-
matically perform the matching and binding of interfaces at runtime [5]. The
MagicBeans framework is more powerful than the plugin systems used to extend
applications like web browsers, as we can handle plugins to plugins, creating
arbitrarily complex configurations of components. An advantage over the plu-
gin system used by Eclipse [13], is that we do not require that the system be
restarted in order to pick up new plugins.

MagicBeans is implemented in Java, and allows a system to be composed
from a set of components, each of which comprises a set of Java classes and

Predictable Dynamic Plugin Systems 3

other resources (such as graphics files) stored in a Jar archive. The MagicBeans
platform is a component in its own right, but the system starts with it already
in place as a bootstrap. The platform provides some static methods that can be
called from any other component.

The platform maintains lists of all of the components in the system and the
bindings between them. When a new plugin is added to the system, the plat-
form searches through the classes and interfaces present in the new component’s
Jar file to determine how it can be connected to the components currently in
the system. For each component, the plugin manager iterates through all of the
classes contained inside the Jar file, checking for interfaces implemented (pro-
visions) and methods accepting plugins of particular types (requirements), and
compares these for compatability with the provisions and requirements of the
other components currently in the system. To be compatible, a provision must
be a subtype of a requirement. In each case that a match is found, the class
implementing the provision is instantiated and a reference to the object created
is passed to the other component, creating a binding.

2.2 Modelling structure and behaviour

Software Architecture describes the gross organisation of a system in terms of
its components and their interactions. The Darwin ADL [10] can be used for
specifying the structure of component based and distributed systems. Darwin
describes a system in terms of components that manage the implementation of
services. Components provide services to and require services from other com-
ponents through ports. The structure of composite components and systems is
specified through bindings between the services required and provided by dif-
ferent component instances. Darwin has both a textual and a complementary
graphical form, with appropriate tool support.

Darwin structural descriptions can be used as a framework for behavioural
analysis. Darwin has been designed to be sufficiently abstract as to support
multiple views, two of which are the behavioural view (for behavioural analy-
sis) and the service view (for construction). Each view is an elaboration of the
basic structural view: the skeleton upon which we hang the flesh of behavioural
specification or service implementation.

Focussing on the behavioural view, we can use simple process algebra - Finite
State Processes (FSP) [9] - to specify behaviour. A complete system specification
can be written by using the same action names in the behavioural specification
as in the Darwin service descriptions. These specifications are translated into
Labelled Transition Systems (LTS) for analysis purposes. Analysis is supported
by the Labelled Transition System Analyser (LTSA) tool.

3 Generating a model of the system

In our system of plugin components, the runtime plugin framework (MagicBeans)
forms a middleware platform. This is responsible for initialising all of the com-
ponents, matching the required and provided interfaces of the new component

4 R. Chatley, S. Eisenbach, J. Kramer, J. Magee, and S. Uchitel

against those of the other components already in the system, and creating bind-
ings between them, in order to create an application. Any addition or removal of
components has to be done via the plugin framework. The framework therefore
has information about all of the components currently in the system, and how
they are connected.

The framework can use this information to produce a textual specification in
Darwin that gives a snapshot of the current system configuration. This can be
done at runtime, based solely on the information present in the compiled code
of the components and the current state of the system. There is no need for the
developer to provide Darwin descriptions of each component, as these can be
generated automatically from the bytecode.

3.1 Matching plugin concepts with Darwin concepts

Our plugin components comprise collections of (Java) classes and interfaces bun-
dled together in a Jar file (which may also contain other resources such as
graphics or data files). Below is the Java code for a basic filter plugin, and
the corresponding Darwin description that is generated from it. The Java code
follows an outline that would be the same for any plugin. The code for the class
and interface would be compiled and packed into a Jar file, forming the plugin
component.

For each Jar file we will have a corresponding component construct in Darwin.
The Jar file may contain a number of class files representing interfaces. These are
collections of methods that define types. We equate them with Darwin interface
definitions which perform the same function.

Java :

public interface Filter { public void data(String x); }

public class FilterImpl implements Filter {

Filter next;

// constructor

public FilterImpl() {

PluginManager.register(this);

}

// implementation of Filter interface

public void data(String x) {

if (next != null) { next.data(x); }

}

// method to be called by plugin platform

public void pluginAdded(Filter f) { next = f; }

}

Predictable Dynamic Plugin Systems 5

Darwin :

interface Filter { data; }

component FilterImpl {

require next:Filter;

provide Filter;

}

Some of the classes in the Jar file may be declared as implementing certain
public interfaces. These are classes that provide services that can be used by
other components. The inclusion of such a class in a plugin is equivalent to
declaring a Darwin component to have a provided port with the type named by
the interface. Such a class may be instantiated several times, by a third party,
to produce objects that provide this service. We do not have explicit names for
these objects, so in Darwin we just declare the type of the provided port.

Components can use services provided by other components. When a new
plugin is added to a system, the component that accepts it needs to be able to call
methods provided by that plugin in order to use it. In Darwin this corresponds
to a required port. In Java we need a reference to an object of a certain type in
order to be able to call its methods. The mechanism by which we acquire such
a reference in the plugin system is as follows.

An object registers as an observer with the plugin platform, by calling a
static method register() in the PluginManager class. To be notified of new
plugins, the object can define a number of pluginAdded() methods with dif-
ferent parameter types. When a new plugin is connected the platform picks the
relevant method and calls it, passing a reference to the object from the new
component that provides the service. In the body of the pluginAdded()method
this reference is assigned to a field of the appropriate type.

We generate requires ports in the Darwin specification for any field in the
Java which is assigned to within the body of one of the pluginAdded()methods.
We name the port with the name of the field as declared in the class, next in the
above example. Naming required ports is necessary as it is possible for a compo-
nent to have more than one required port of the same type, as a component may
accept multiple plugins of the same type. These could be assigned to different
fields in the class, or added to an array. For example, a forking filter would for-
ward data to two different downstream components, and so would accept, and
keep references to, two plugins with the same interface.

It should be noted that it is much more difficult to extract information about
the required services from a component than the provided service. We have to
look for names of fields, and examine the body of the pluginAdded()method by
processing the Java bytecode, rather than simply finding the type of the class.
It is a trait of object-oriented programming that objects typically declare the
methods that they provide, but not those that they use from other objects.

6 R. Chatley, S. Eisenbach, J. Kramer, J. Magee, and S. Uchitel

When constructing a system, we work at the level of components. A new Jar
file is loaded to add a component. Any provided ports in the new component
that match required ports in other components, or vice versa, are identified. The
class that provides the service is instantiated by the plugin platform and any
observers in the component requiring the service are notified, passing a reference
to this new object. This process creates a binding between the two components.
In Darwin terms, we model the complete system as a component, and add to it
an instance of the providing component, which is given an arbitrary, but unique,
name. We also add a binding between the relevant ports and components. The
following would be generated for a chain of two filters:

component System {

inst f:FilterImpl;

f2:FilterImpl;

bind f.next -- f2.Filter;

}

3.2 Specifying behaviour

A simple example showing how these concepts might be extended to include
behaviour (a specification of the order in which actions are performed) is a
client connected to an email server. The Client component contains an interface
Email, declaring the methods login(), fetchMail() and sendMail(), and when
notified of an object of this type will call these methods. The Server component
contains a class that implements the Email interface. The plugin framework
can create a description of the interface and the two components in Darwin.
Provided and required ports are declared with the appropriate types. In the
example, the system as a whole comprises one instance each of the Client and
Server components, with the two ports connected by a binding.

interface Email { login; fetchMail; sendMail; }

component Server {

provide Email;

}

component Client {

require serv:Email;

}

component System {

inst s:Server;

c:Client;

Predictable Dynamic Plugin Systems 7

Client Server

Framework

Fig. 1. Client provides FSPDefinition to the plugin framework

bind c.serv -- s.Email;

}

The information in the Darwin description is purely structural. In order to
add some information about the behaviour of each of the components, we need
a way of including an abstract description of the behaviour with the component.
We do not want to provide the behavioural model separately from the component
as one of the ideas underpinning plugin technologies is that plugins should be
deployed as single entities that include everything they need in order to be used.

The approach we have taken is to allow each component to have a another
provides port where it can provide a textual description of its behaviour (in
FSP) as a string. A binding can be made between this port and a requires port
on the plugin framework (which is itself a component that can be connected in
the same way that any other in the system can), see Figure 1.

When the framework is constructing the Darwin to describe the current state
of the system, it will request the FSP from any components that provide it, and
include this in the model. For example, we can include the following (Java)
class in the Client component, allowing it to provide an FSP description of its
behaviour:

public class ClientBehaviour implements FSPDefinition {

public String getFSP() {

return ‘‘Client = (serv.login -> serv.fetchMail

-> serv.sendMail -> Client).’’;

}

}

When the framework generates the system description, it requests the FSP
description from the Client and includes it in the Darwin inside the definition

8 R. Chatley, S. Eisenbach, J. Kramer, J. Magee, and S. Uchitel

of the Client component (inside a special type of comment /% ... %/) in the
Darwin specification, as below. The behavioural description shows an ordering
of actions called through the serv port (the client logs in, then fetches email,
then sends email), which cannot be derived from the interface descriptions alone.

In the case that a component does not provide an FSP description of its
behaviour, as with the Server component in this example, we generate a process
that allows any of the actions from the component’s provided interfaces to be
performed in any order.

interface Email { login; fetchMail; sendMail; }

interface FSPDefinition { getFSP; }

component Client {

require serv:Email;

provide FSPDefinition;

/% Client = (serv.login -> serv.fetchMail

-> serv.sendMail -> Client). %/

}

component Server {

provide Email;

/% Server = ({ login, fetchMail, sendMail } -> Server). %/

}

component Framework {

require fsp:FSPDefinition;

}

component System {

inst s:Server;

c:Client;

bind c.serv -- s.Email;

f.fsp -- c.FSPDefinition;

}

Here we have included the Framework component in the model, and show
how the Client provides the behavioural definition through a port which is bound
to the corresponding port in the Framework. We have omitted any description
of the behaviour of the Framework, as it is part of the infrastructure rather than
a user component. We assume that the Framework is transparent and will not
introduce any behavioural problems.

Predictable Dynamic Plugin Systems 9

3.3 Changes of configuration

As the configuration of a piece of software constructed from plugin components
changes over time, the way that particular components behave may also change.
Components may behave differently depending on whether they have other com-
ponents connected to their required ports.

When a plugin is connected to the system, other components need to change
their behaviour to take advantage of the new services provided. Existing compo-
nents need to be notified that a new component has been connected. To achieve
this, components register with the plugin framework as observers, to be notified
when a change in configuration occurs that is relevant to them.

The framework calls the observer back through the pluginAdded() method.
In the FSP we can use the corresponding action pluginAdded action as a signal
to change from one mode of behaviour to another. If a component implemented
a basic matrix analysis algorithm, but allowed a plugin to be connected that
provided a more efficient implementation of this algorithm, the component might
perform the calculation itself while its requires port is unbound. If and when it is
notified that a plugin has been added (the port has been bound), the component
will change its behaviour so that from then on the call is delegated to the plugin.
This could be described in FSP as follows:

component MatrixSolver {

require fast:Algorithm;

/%

MatrixSolver = (input -> calculate -> output -> MatrixSolver

| pluginAdded -> FastSolve),

FastSolve = (input -> fast.solve -> output -> FastSolve).

%/

}

3.4 Specifying properties

In FSP, safety and liveness properties can be specified for a model, and we
can check these using a model checker. We also have the facility for expressing
properties in a linear temporal logic. Currently we manually specify properties
textually in the tool, but we anticipate that properties could be provided in
components in the same way that behavioural specifications are. Properties could
then either be provided as plugins in their own right, to plug in to the platform,
or be integrated into other components. The platform could then incorporate
them into the model.

3.5 Composing the system

The Darwin compiler constructs a parallel composition of the behaviours of
each of the separate components, employing an appropriate relabelling such that

10 R. Chatley, S. Eisenbach, J. Kramer, J. Magee, and S. Uchitel

components that are bound together are synchronised. For every pair of ports
that are bound, providesport.action is relabelled to requiresport.action.
Any action included in a behavioural description that is not part of one of the
interfaces of one the ports of a component is treated as an internal action. The
resulting FSP model can be compiled to a labelled transition system and checked
for properties such as deadlock [9].

When a new component is identified for addition to the system, we can
determine how we intend to bind the new component, and then build a model of
how the system would behave if the new component were connected in that way.
If we do this before the component is connected, we can use the model to check
whether adding the component will cause the system to violate any properties
that we wish to hold. This information can be used to decide whether or not a
new component should be bound to the system in a certain way, or added at all.

4 Predicting behaviour

We consider an example based loosely on the Compressing Proxy Problem [7].
A set of components are chained together to form a pipeline through which
data can flow. We will allow further components to be plugged in to the end
of the pipeline increasing the length of the chain over time. The basic premise
of the problem is that in order to increase the efficiency of data transfer along
the pipeline, a compression module is introduced at either end, compressing the
datastream at the source and decompressing it again at the sink.

In the original Compressing Proxy Problem, the pipeline comprises a set of
filters which all run in a single UNIX process. Integrating a compression module
that uses gzip with this system requires some thought, as gzip runs in a separate
process. An adapter is therefore used to coordinate the components. In this
example we consider only the source end of this situation, although similar issues
are involved at the sink.

Each component is implemented as a set of Java classes and interfaces pack-
aged into a Jar file. We start the plugin framework, with a Source as the com-
ponent that forms the core of the system. The Source generates data and sends
it down stream, see Figure 2. Each component provides an FSP definition of its
behaviour. The Source component includes the following class:

public class SourceBehaviour implements FSPDefinition {

public String getFSP() {

return ‘‘Source = (next.data -> Source).’’;

}

}

Each of the other component Jar files contains a similar class. We add a
plain Filter to the pipeline. The Filter simply reads data from upstream and
passes it on downstream. FilterImpl implements the Filter interface, and has

Predictable Dynamic Plugin Systems 11

Source Filter Adapter Filter

GZip

Fig. 2. Arrangement of components in pipeline with gzip

a field of type Filter for a reference to the next component in the pipeline.
FilterImpl’s data() method just calls the next component’s data() method.
This is specified in FSP as:

FilterImpl = (data -> next.data -> FilterImpl).

The gzip compressor cannot be placed directly into the pipeline, and so needs
an adapter component to pass data to it. The GZip component then plugs in to
the adapter. When there is no gzip processor present, the adapter should behave
like a plain filter. When in adapting mode, the adapter sends packets out to the
processor and reads the processor’s output back in before sending the processed
packets on downstream. The pluginAdded action triggers the transition from
plain filter to adapting behaviour.

Adapter = FilterImpl,

FilterImpl = (data -> next.data -> FilterImpl

| pluginAdded -> Adapt

),

Adapt = (data -> out.packet -> ToProc),

ToProc = (out.packet -> ToProc | out.end -> FromProc),

FromProc = (packet -> FromProc | end -> next.data -> Adapt).

The complete Darwin and FSP specifications can be found at http://www.
doc.ic.ac.uk/~rbc/writings/fase04_appendix.pdf. Using the Darwin com-
piler to translate this specification to FSP, then compiling that to an LTS model,
enables the use of a model checker to perform a check for deadlock.

If we generate the model for the system without the gzip processor, then we
can check the behaviour of the basic pipeline. In order to ensure that the adapter
does not enter its adapting mode, it needs to be prohibited from performing the
pluginAdded action. This can be done by composing the system in parallel
with a process modelling the framework that synchronises on a.pluginAdded

but never performs this action. Such a process can be defined as STOP with an
alphabet extension to include the a.pluginAdded action.

12 R. Chatley, S. Eisenbach, J. Kramer, J. Magee, and S. Uchitel

Fig. 3. Screenshot from LTSA showing trace to deadlock

Framework = STOP + {a.pluginAdded}.

||NoGZip = (System || Framework).

If we build the NoGZip process and check it, the model checker reports
that it is deadlock free. If we add the GZip component, remove the constraint
so that pluginAdded can occur, rebuild the model and check again, we find
that the following trace leads to a deadlock: f.data, a.pluginAdded, a.data,

f.data, g.packet, g.full (as shown in Figure 3). This indicates that adding
the gzip processor can lead to a deadlock if GZip’s output buffer becomes full
before the adapter is ready to accept output from the gzip processor.

To have the system work correctly without deadlocking requires replacing the
adapter component with one that will accept output from the processor before
having sent it the end signal to say that the input has finished, or using a GZip
component that never tries to write any output before it receives the end of
input signal, i.e. it has infinite capacity buffers.

5 Tool support

The Labelled Transition System Analyser is a tool that compiles FSP into LTS
models and checks properties on those models [9]. The LTSA itself now uses our
plugin architecture, and we have developed a plugin for it to allow Darwin to
be written and translated to FSP. We have also added an extension where the
LTSA hosts a server that listens for Darwin specifications which are sent to it
over the network.

Using these extensions, we can run a plugin application on one machine,
and whenever a change is about to be made to the configuration, generate a
Darwin/FSP specification and send it over the network to an instance of LTSA
running on another machine. The LTSA then builds and checks the model. Pro-
ducing a model of what the system would be like when a component is added be-
fore actually commiting and making the bindings, we can use the model checker

Predictable Dynamic Plugin Systems 13

to decide whether or not adding that component and making the proposed bind-
ings is a safe thing to do.

We could use this process to check a set of possible bindings to see if any are
unacceptable because of violation of properties. Running the checks on a remote
machine means that we do not have to include all of the code for the model
checker in the plugin platform.

Building and checking an LTS model can be expensive in terms of computa-
tion. Depending on the frequency with which changes in the system configuration
are made, and how sure the administrators need to be that the resulting system
will not deadlock, it may or may not be worth doing. Checking new additions
to a large business server, where changes are large, infrequent, but business crit-
ical could definitely be justified. Checking the correctness of configurations of
a desktop music player application when trying out different GUI components
might well not be.

6 Related Work

There is a general movement towards the idea that the specification of a compo-
nent should include information about its behaviour as well as its interface [2].
Several ADLs have been extended or complemented with languages for describ-
ing behaviour, for example C2SADEL [11] which uses logic to specify behaviour,
or Wright [6] and PADL [3] which use process algebra.

The idea of incorporating the specification with the component is supported
by Microsoft’s AsmL [1]. This allows for the runtime verification of the behaviour
of the implementation against the specification.

Another angle on including within a component a way to check that it meets
some property is the use of proof-carrying code [12]. Components can be provided
along with a proof that they fulfil some property. The system on which they are
intended to run can verify these proofs using a proof checker.

The Bandera project [14] aims to extract process models directly from Java
code, so that models can be built and checked directly, without human interven-
tion.

In the work that we have presented here, we combine the behavioural de-
scriptions for all components and check for a property. It might be interesting to
see whether it is possible to use techniques designed for finding the assumptions
necessary for assume-guarantee reasoning [8] to find an assumption that must
hold for a component being added to the system, and check that component
against the assumption separately from the system.

7 Conclusions and Future Work

We have presented a technique for automatically generating a description of the
structure and behaviour of an application that has been composed dynamically
from plugin components. Using tools we can compile this description to an LTS

14 R. Chatley, S. Eisenbach, J. Kramer, J. Magee, and S. Uchitel

model, which we can test, using a model checker, to determine whether various
desirable system properties hold.

The structural description can be generated automatically by the plugin mid-
dleware, based on the interfaces exported by each of the plugins and the bindings
made between them. Behavioural information for each plugin is given in the form
of a description in the FSP process calculus which is included in the component.
By combining the behavioural information about each component with the de-
scription of the system structure, a model of the behaviour of the system as a
whole can be generated.

The model can be compiled to the form of an LTS which can be analysed
automatically, using a model checker, for adherence to desired system properties.
Performing such analysis before a new plugin as added to the system allows us
to predict whether the addition of this new component would cause the system
to behave in an undesirable way.

Future work in this area could include trying to extract more behavioural
information directly from the code of the components, rather than requiring the
developer to write the specification by hand. Some techniques for doing this are
being developed as part of the Bandera project [14] which could possibly be
used. This could allow behavioural specifications to be generated automatically,
rather than requiring the developer to write them in a language that may well
be unfamiliar. However, if the model that is generated is too detailed then we
may suffer from the state explosion problem when model-checking. Another ap-
proach would be to produce tools to assist developers in writing the behavioural
specifications.

With our current technology, plugin systems are constructed by matching
port types, and the techniques discussed here can be used to check the resulting
system for adherence to a property. The use of behavioural properties could be
extended to further direct and constrain the construction and reconfiguration of
systems beyond what is currently possible.

8 Acknowledgements

We would like to acknowledge our colleagues in the Distributed Software En-
gineering and the SLURP group at Imperial for their participation in the dis-
cussions that helped to refine this work. We would also like to acknowledge the
support of the European Union under grant STATUS (IST-2001-32298) and the
EPSRC under grant READS (GR/S03270/01).

References

1. M. Barnett, W. Grieskamp, C. Kerer, W. Schulte, C. Szyperski, N. Tillmann, and
A. Watson. Serious specification for composing components. In 6th ICSE Workshop
on Component-Based Software Engineering: Automated Reasoning and Prediction,
2003.

Predictable Dynamic Plugin Systems 15

2. M. Barnett and W. Schulte. The ABCs of specification: AsmL, behavior, and
components. Informatica, 25(4):517–526, Nov. 2001.

3. M. Bernardo, P. Ciancarini, and L. Donatiello. Architecting families of software
systems with process algebras. ACM Transactions on Software Engineering and
Methodology (TOSEM), 11(4):386–426, 2002.

4. C. Szyperski. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley Pub Co, 1997.

5. R. Chatley, S. Eisenbach, and J. Magee. Painless Plugins. Technical report, Im-
perial College London, www.doc.ic.ac.uk/∼rbc/writings/pp.pdf, 2003.

6. D. Garlan, R. Allen, and J. Ockerbloom. Exploiting style in architectural design
environments. In Proceedings of the ACM SIGSOFT ’94 Symposium on the Foun-
dations of Software Engineering, pages 175–188, 1994.

7. D. Garlan, D. Kindred, and J. Wing. Interoperability: Sample Problems and So-
lutions. Technical report, Carnegie Mellon University, Pittsburgh, 1995.

8. J. Cobleigh, D. Giannakopoulou and C. Pasareanu. Learning Assumptions for
Compostional Verification. In Proc. of TACAS 2003. LNCS, April 2003.

9. J. Magee and J. Kramer. Concurrency – State Models and Java Programs. John
Wiley & Sons, 1999.

10. J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying Distributed Soft-
ware Architectures. In Proceedings of the 5th European Conference on Software
Engineering, Sitges, Spain, 1995, pages 137–154. Springer Verlag, 1995.

11. N. Medvidovic, D. Rosenblum, and R. Taylor. A language and environment for
architecture-based software development and evolution. In ICSE ’99, 1999.

12. G. C. Necula and P. Lee. Proof-carrying code. In Proceedings of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Langauges (POPL
’97), pages 106–119, Paris, Jan. 1997.

13. Object Technology International, Inc. Eclipse Platform Technical Overview. Tech-
nical report, IBM, www.eclipse.org/whitepapers/eclipse-overview.pdf, July 2001.

14. O. Tkachuk, M. B. Dwyer, and C. Pasareanu. Automated environment generation
for software model checking. In Automated Software Engineering, 2003.

