

Model-based Simulation of Web Applications for Usability Assessment

Robert Chatley, Jeff Kramer, Jeff Magee, Sebastian Uchitel
Dept of Computing, Imperial College London

{rbc,jk,jnm,su2}@doc.ic.ac.uk

Abstract

In this paper we discuss an approach for simulating
the behaviour of interactive software systems, before
starting on any of the actual implementation, based on a
model of the system at the architectural level. By
providing a mock-up of the final user interface for
controlling the simulation, it is possible to carry out
usability assessments of the system much earlier in the
design process than is usually the case. This means that
design changes informed by this usability assessment can
be made at this early stage. This is much less expensive
than having to wait until an implementation of the system
is completed before discovering flaws and having to make
major changes to already implemented components. The
approach is supported by a suite of cooperating tools for
specification, formal modelling and animation of the
system.

1. Introduction

 In recent years, there has been increasing regard for
usability as a quality attribute for software. Techniques
have been developed by which the usability of systems
can be assessed [1][2], however these techniques often
involve activities such as interviewing users, or recording
their use of the system with a video camera. Using them
therefore requires a working implementation of the
system and a representative user. This means that
usability assessment and subsequent improvement may
only be carried out late in the development process. At
this stage it is very expensive to go back and make major
changes to the design[3].
 We present a technique for modelling the system at the
architectural level, including its interaction with the user,
and connecting this to a realistic mock-up of the user
interface. This allows some traditional usability
assessment techniques to be applied much earlier in the
design process, once the architecture has been
determined, but before detailed design and
implementation have started. It also allows for checking
properties of the system, for instance finding possible

deadlocks. In particular we have concentrated on
developing techniques that allow the realistic simulation
of web and e-commerce applications, as usability is a key
factor in the success of these types of application[11].
The remainder of this paper describes the approach in
detail, the supporting tools and examples of their use.

The input to our modelling and simulation technique is
a set of scenarios describing interactions between
different components (including the user) of the system.
In previous work on scenarios we have developed
techniques for analysing formal models built from sets of
scenarios described in the form of Message Sequence
Charts (MSCs) [4]. Here we use a set of MSCs to specify
behaviours of the user and system. From these we
synthesise a behaviour model which drives the
simulation.

2. Background

 The Labelled Transition System Analyser (LTSA) tool
allows the construction and checking of models of finite
state processes. This tool, which is described fully in [5],
allows us to build models of the behaviour of complex
systems which are amenable to formal analysis in the
form of labelled transition systems (LTS), and to check
properties of these models mechanically. We have
extended this tool to allow system behaviour to be
specified by means of sets of scenarios described in the
form of MSCs. This work is described in [6].
 Using these techniques, we are able to build models of
the behaviour of systems, which include the user, built up
from scenarios gathered during the requirements
elicitation process. In this way we can model and
investigate the interactions between the system and the
user.
 In order to make it possible to test the quality of the
user’s experience of the system based on the model, some
sort of animation needs to be provided to allow the user to
interact with the model through an interface which at least
approximates that which they would use in the final
system. Animation has previously been used to make it
easier to interpret the meaning of traces returned from
model checking[7]. A trace to deadlock for example may

be illustrated in the problem domain by replaying the
relevant sequence of actions as a graphical animation.
 In order to simulate web applications, and to give a
more accurate representation of the experience of using a
web application, we have developed a new animation
technology allowing users to interact with the model
through the familiar interface of web pages displayed in a
standard web browser. This technology is described in
more detail in Section 4.

3. Animating Models

 The behaviour of a model can be interactively explored
using the LTSA tool. The output of such an execution is
essentially a trace of action names. Each action is the
abstract representation in the model of an input or output
of the proposed system [5]. One of the features provided
by the unextended LTSA is the ability to run or to step
through a trace of possible actions, and to see the
resulting state changes reflected in the state machines.
LTSA can display graphically state machines reflecting
the LTS for each separate component or for a composed
system. The current state and the last transition made are
highlighted on the display. The user can trigger any of the
currently available actions by selecting them from a
dialog box, causing a transition to occur.
 A difficulty arises in interpreting the meaning of traces
in relation to the original problem domain. Even when the
meaning is clear to the model designer, the problem of
communicating model to non-technical stakeholders of a
system remains. Because we want to explore and assess
the usability of the system based on these behaviour
models, we need to develop techniques that enable us to
convey the meaning of the model, in terms of the actual
system that it is intended to represent, to an end user. As
discussed in [7], there is a lot to be gained from using
graphic animations to communicate the results of
analysing formal models of systems.
 One example of an animation technique which can be
used with LTSA is SceneBeans[8]. SceneBeans is a Java
framework for building and controlling animated
graphics. It removes the drudgery of programming
animated graphics, allowing programmers to concentrate
on what is being animated, rather than on how that
animation is played back to the user. SceneBeans is based
upon JavaBeans and XML. Its component-based
architecture allows application developers to easily
extend the framework with domain-specific visual and
behavioural components.

4. Simulating Web Applications

 Scenebeans has been used to present a graphical
representation of how components interact in models of
complex concurrent systems, for example switching
between channels on a modern television set.
 However, using this particular technology to animate
the model, it is difficult to produce an interface that
accurately represents the type of interface users are
accustomed to for a web or e-commerce application,
namely that of web pages in a web browser. Therefore, it
is difficult to use such a simulation for usability testing
and gain an accurate idea of users’ responses to the actual
system. In the television example, there are sufficient
differences between the way that a user would interact
with the on-screen representation of a remote control and
the way that they would use a physical handheld remote
control to render any usability measurements taken using
the simulation fairly meaningless. To give an accurate
idea of the usability of the system, a mock-up of the
eventual user interface needs to be provided that is much
closer to what the user will actually experience.
 To attack this problem in the arena of web and e-
commerce applications, we have developed a new
animation technology, which allows the user to interact
with the model of the system by means of clicking on
links and buttons in a web browser. The LTSA tool was
extended so that it can provide an interface to the model
through a set of web pages which can be viewed in a
standard web browser. This extra functionality was
provided by writing a plugin to be used with LTSA’s
extension mechanism, as with the Message Sequence
Chart extensions.
 The benefits of the approach to simulation given here
as compared to, for instance, that taken in [12] are that
our simulation tools work with our existing behaviour
modelling tools without having to change the
representation in any way, and that the appearance of the
interface to the simulation can easily be made to reflect a
designer’s proposal for the look of the final system.
 The web animator plugin allows us to associate
fragments of HTML with different possible actions.
These can be hyperlinks, buttons or any other interactive
element commonly found on web pages. The plugin will
dynamically compose a web page from these fragments
and serve it to a web browser to display. The user can
then click on any of the buttons or links in the browser to
trigger a transition in the LTS.
 The basic architecture of the Web Animator is shown
in Figure 1. The plugin adds a mini webserver to the
LTSA so that it can communicate with a standard web
browser by means of the HTTP protocol.
 The LTSA produces an XML document describing the
available transitions each time that a new state is reached.
An XSLT[9] transformation is applied to this XML

document based on an XSL stylesheet. This stylesheet
describes a transformation from XML to HTML which
defines the visual appearance of the web pages. This
HTML is then sent over the network via HTTP to the
browser where it is rendered.
 When the user is presented with such a webpage, they
can click on any of the links or buttons on the page,
which will cause the browser to send an HTTP request
back to the server. The server analyses this request to
detect what action the user has requested and triggers an
appropriate transition in the LTS.
 Extra decision logic has been added so that it is
possible to make a distinction between actions that are
carried out by different parties. This allows us to
distinguish between actions performed by users and those
that are carried out by components of the system without
any user intervention. We call these respectively “user
actions” and “system actions”. An external XML file is
used to configure which actions are to be classed as
system actions and which as user actions.
 If in any state there are no actions available to the user,
only system actions, the tool will pick a system action to
perform and continue to execute system actions until a
state is reached where there is a user action available. On
reaching such a state control is returned to the user and
the user can choose which of the actions available to them
to perform next. It is possible to control the way in which
the tool selects an action from the available system
actions in any state by including extra information in the
XML configuration file. Boolean expressions can be
encoded in the XML, which can be used to make
decisions on which system action to perform. These

expressions can also test data which may have been input
by the user through fields on the web page interface. For
example, a typical scenario might be that of logging in to
a website with a username and password. Depending on
whether the username and password are entered correctly,
the next page that the user sees will be different. This can
be modelled by having a choice of two system actions
authenticate and reject. If the username and password
match the expected values, the system should perform the
authenticate action, otherwise it should perform the reject
action and ask the user to try again.
 If the simulator has no extra information to guide its
choice, it simply makes a random selection from the
available system actions.
 The visual appearance of the web pages is described in
an XSL stylesheet. This is a standard way of expressing a
transformation from XML to another data representation,
in this case HTML. This technique is itself commonly
used in web and e-commerce applications. Because the
output is standard HTML, we can achieve an interface
which is very close to that that might be used in the final
system.
 The separation of concerns, separating the definition of
the visual representation and the extra decision logic from
the scenarios and the specification of the behaviour
model, means that we can achieve a better simulation as
the different parts of the model can be worked on by
different people, for instance a graphic designer could
produce the visual representation without having to learn
about MSCs or behaviour models. We can also change
the visual representation and which actions are system or
user actions independently of the behaviour model, and so

HTML (HTTP)

HTTP request

Render HTML

Contact server

User
clicks

Web BrowserLTSA

LTS Model Web Animator Plugin

List
available
actions

XML action
list

XSL
Transformer

Do
transitions

Decision logic Process
request

Figure 1 : Basic architecture of the web animator plugin.

do not have to recompile the model to make these
changes.
 The fact that the web animator serves web pages by
means of the standard HTTP protocol means that we can
run the system over a network, and so can observe the
model on one computer whilst running the browser with
the user interface on another. This greatly increases the
exibility of the simulation environment.

5. Case study: LogicDIS eSuite

 The eSuite product developed by LogicDIS (a Greek
company who is one of the commerical partners in the
STATUS1 project) is a system that allows access to an
ERP (Enterprise Resource Planning) system, through a
web interface. The system employs a tiered architecture
commonly found in web applications. The user interfaces
with the system through a web browser. A web server
runs a Java servlet and some business logic components,
which communicate with the ERP.
 In this case study we first give examples of scenarios
describing possible uses of the system, and the
interactions between system components.

Figure 2 : An example scenario “Login” from the
eSuite model.

 Figure 2 gives an example of a scenario from the
eSuite model. The four components that take part in the
scenario are shown as instances. They are the user (which
corresponds to a human with a web browser, messages
originating from the user are sent when the user clicks a
button in the browser), the servlet (software running on
the web server which receives requests from the browser),
the business logic (BizLogic) at the heart of the eSuite

application, and the ERP, which is effectively treated as
an external database.

1 STATUS is an ESPRIT project (IST-2001-32298)
financed by the European Commission in its Information
Society Technologies Programs

 The sequence of messages in Figure 2 show what
happens when a user successfully logs in to the system. A
chain of messages cascades through the tiers of the
architecture and information comes back, finally resulting
in an HTML page being displayed to the user informing
them that they are now logged in to the site. This is just
one of a large number of possible scenarios that can
occur. For each of the scenarios that we are interested in,
we construct a basic MSC like this. We can then describe
the sequence in which these scenarios can occur by using
a high level message sequence chart (hMSC). Figure 3
shows part of the hMSC for the eSuite model. It shows
how scenarios can occur in turn (the completion of one
enabling another to be entered), or in iteration as is the
case with FailedLogin (a user can repeatedly attempt to
log in, get their password wrong and try again).

Figure 3 : Part of the hMSC for the sSuite model
displayed in the LTSA tool.

 The specification consists of one hMSC and a number
of bMSCs. In the tool, each bMSC has its own tab, as
does the hMSC. Double-clicking on a scenario in the
hMSC will drill down, opening a detailed view of the
scenario as a bMSC.
 From this set of message sequence charts, we use the
tool to generate a textual description of the system in the
FSP process calculus[5]. This can then be compiled into a
set of labelled transition systems, which we can again
view graphically. Figure 5 shows a graphical
representation of the LTSs corresponding to the different
components of the system. The top diagram in the tool
represents the user. It contains only the states and actions

that pertain to the user. The highlighted states show the
current position in each component’s state machine at a
point in the middle of a simulation.
 To determine which actions should be controlled by the
user during the simulation, and which were internal
system actions, an XML configuration file was written
detailing user and system roles. A fragment of the
configuration file is shown in Figure 4. It defines the
actions that are available to the user, and the conditions
under which verified (a system action) can be performed,
in this case when the login name and password match the
expected values.

<role name="user">
 <possibleaction>enterPwd</possibleaction>
 <possibleaction>search</possibleaction>
 <possibleaction>orderHeader</possibleaction>
 <possibleaction>orderDetails</possibleaction>
 <possibleaction>itemDetails</possibleaction>
 <possibleaction>back</possibleaction>
</role>

<action name="verified">
 <conditions>
 <and>
 <equal key="login" value="DEMO" />
 <equal key="password" value="DEMO" />
 </and>
 </conditions>
</action>

Figure 4: A fragment of the XML configuration

file.
 An XSL stylesheet with templates corresponding to the
various possible user actions was also written. Images
were supplied by LogicDIS which reflect the graphical
appearance of their application. These are easily
incorporated into the interface using standard HTML, and
our tool allows us to provide standard headers and footers
for each genrated page. It is also possible to use cascading
style sheets to apply a custom style to all generated pages.
These are commonly used in the development of web
applications to achieve a consistent look across all pages,
and provide us with an easy way of reflecting the
envisaged design of the finished application in the
simulation.
 Figures 6, 7 and 8 show mock-up interface screens
from the simulation as the user walks through logging in
to the eSuite application and searching for an order. As
can be seen from the pictures, we have managed to
replicate the look of a web application interface in the
simulation very closely by using standard web page
features like text-boxes, buttons and hyperlinks. The
inclusion of graphics and stylesheets from LogicDIS help
to reflect the look of a finished application, and show
how the visual aspect of the simulation is separated from
the behavioural part. Using these images, produced by a
specialist designer, is a simple matter of including a
couple of lines of standard HTML in the XSL stylesheet.

Figure 5: LTSs corresponding to the different
system components, displayed in LTSA.

 The user can interact with the simulation of the system
in exactly the same way as they would with a real web
based system, by clicking on links and buttons in the web
browser. Transitions occur in the underlying LTS model,
unseen by the user, and another web page is returned to
them.
 In this way we can allow the user to experience
interacting with the system, and find out whether the
series of interactions they go through to perform tasks, or
find things on a website, is easy to learn, efficient to use,
consistent, predictable and so on, using traditional
usability assessment techniques, but using the simulation
rather than the finished system.

Figure 6: A simulation interface screen displayed

in a web browser, showing the login screen.

 If it is felt that the usability of the system could and
should be improved, suitable changes can then be made to
the design of the way that the user interacts with the
system simply by making changes to the MSC
specification and recompiling the model, after which the
simulation can be run again. At this early stage in the
development process it is still cost effective to make these
changes, as development effort has not yet been spent on
implementing a detailed design.

Figure 7: When the user has logged in they can

perform a search.

Figure 8: The results of a search operation are
displayed.

 6. Conclusion

 We have shown that by building a behaviour model
for a system from a set of scenarios, and linking it to a
suitable animation, a user can interact with a simulation
of a system with a similar experience to using the real
application. Simulations can be built which reflect
interaction with a real system to the extent that they are
suitable for performing usability assessments. Scenarios
in the form of MSCs provide an easy method for
describing individual system behaviours from which we
can synthesise a formal model. This model is then used to
constrain the behaviour exhibited in the simulation.
 We presented a new animation tool which allows an
interface in the form of a set of web pages to be attached
to a behaviour model in the form of a labelled transition
system. By harnessing standard web protocols, the tool
allows a user to interact with a simulation of a web
application using a standard web browser interface. This
allows us to provide a realistic simulation. By separating
the visual aspects of the simulation from the behaviour
model we allow each to be developed separately by
specialists and then easily combined.
 We presented a case study in which we created a
simulation of an existing e-commerce application, starting
with a set of scenarios. With relatively little effort we
were able to recreate the look and feel of the original
application’s interface in our simulation.
 Using this technique affords us the possibility of
performing usability tests early in the development
process. Identifying usability weaknesses at this stage
allows for significant changes to be made to the design of
a piece of software without incurring great expense.
Traditionally the results of usability tests have lead only
to fairly cosmetic changes to the interface of systems,
concerning the display and layout of data. Changes to the
way that the user interacts with the system may require
much greater change to a system, possibly at the
architectural level. For instance, the ability to undo
actions cannot be added as a last minute feature, it must
be factored into the architecture at an early stage [10].
Early detection of usability problems and possible
improvements using the simulation techniques described
here can help us to engineer for usability from the start of
the development process.

 7. Future Work

 A feature of web applications not explored here is the
possibility that more than one user is using the system at
the same time. In future work we hope to simulate the
effect on the system of multiple concurrent users, to see
whether the action of one user may affect another user’s

experience of the system, and whether this may be the
cause of unexpected behaviour.
 By combining this simulation approach with some
work on stochastic modelling, it would be possible to
introduce effects such as non-deterministic time delays in
certain parts of the system (for instance a delay during
server processing before a page is returned to the client).
Introducing these effects could lead to even more realistic
simulations.
 If there are properties of systems which we can
categorise as being undesirable from a usability
perspective, it would be interesting to try to detect these
using a model checking algorithm.
 Another extension of this work might be to use the
simulation interface to elicit further scenarios and
elaborate a partial model of the system as part of a user-
centred design process.

8. Acknowledgements

We gratefully acknowledge the support of the European
Union under grant STATUS (IST-2001-32298), and the
partners working on the STATUS project.

9. References

[1] Preece, J., Y. Rogers, H. Sharp, D. Benyon, S. Holland, T.
Carey. Human-Computer Interaction. Addison Wesley, 1994.

[2] Constantine, L.L., L.A.D. Lockwood. Software for Use: A
Practical Guide to the Models and Methods of Usage-Centered
Design. Addison-Wesley, New York, NY, 1999.

[3] Brooks, Jr., F.P., 1995: The Mythical Man-Month: Essays on
Software Engineering, Twentieth Anniversary Edition, Reading,
MA: Addison-Wesley

[4] S. Uchitel, J. Kramer and J. Magee. “Negative Scenarios for
Implied Scenario Elicitation”, Proceedings of 10th ACM
SIGSOFT International Symposium on the Foundations of
Software Engineering (FSE'02)

[5] Magee J., and J. Kramer, Concurrency – State Models and
Java Programs. John Wiley & Sons, March 1999

[6] S. Uchitel, R. Chatley, J. Kramer and J. Magee. “LTSA-
MSC: Tool Support for Behaviour Model Elaboration Using
Implied Scenarios”, Proceedings of TACAS 2003

[7] J. Magee, N. Pryce, D. Giannakopoulou and J. Kramer,
“Graphical Animation of Behavior Models”

[8] N. Pryce and J. Magee, “SceneBeans: A Component-Based
Animation Framework for Java”

[9] J. Clark, “XSL Transformations (XSLT) Version 1.0”,
http://www.w3.org/TR/xslt

[10] L. Bass, B. John, J. Kates. “Achieving Usability Through
Software Architecture”, CMU/SEI Technical report 2001

[11] Nielsen J., Designing Web Usability, New Riders
Publishing, Indianapolis, 2000

[12] A. Egyed and D. Wyle, “Statechart Simulator for
Modelling Architectural Dynamics”, Proceedings of the 2nd
International Working Conference on Software Architecture
(WICSA), Amsterdam, 2001.

http://www.w3.org/TR/xslt

