
KenyaEclipse: Learning to Program in Eclipse

Robert Chatley
Department of Computing
Imperial College London

180 Queen’s Gate, London SW7 2AZ

rbc@doc.ic.ac.uk

Thomas Timbul
Department of Computing
Imperial College London

180 Queen’s Gate, London SW7 2AZ

tt101@doc.ic.ac.uk

ABSTRACT
A fundamental part of a Computer Science degree is learning to
program. Rather than starting students on a full commercial lan-
guage, we favour using a dedicated “teaching language” to intro-
duce programming concepts.

At the same time, we want to introduce students to popular tools
that assist in the software development process. However, up un-
til now our teaching language, Kenya, has not been supported by
professional IDEs. Therefore, we have been unable to progress
smoothly from first principles to the state of the art within one en-
vironment.

We present work that integrates the Kenya language into the
Eclipse environment. Students can now become familiar with the
major features of a professional IDE while learning to program, and
experience a smooth transition to commercial languages within the
same environment.

One of the hardest things to teach students is good programming
style. Compilers reveal syntactic and type errors, but do not analyse
style. We have harnessed as-you-type code checking, as seen in
Eclipse’s Java development tools, to provide advice on program
style as well as correctness.

Categories and Subject Descriptors
D2.3 [Coding Tools and Techniques]: Structured Programming

General Terms
Design, Languages

Keywords
programming, education, style checking, Eclipse

1. INTRODUCTION
Teaching a programming language such as Java to university stu-

dents is a challenging task. Java is a large and complex language
with many features. This is also true of other “commercial” lan-
guages such as C# or C++. These languages are powerful, but

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC-FSE’05, September 5–9, 2005, Lisbon, Portugal.
Copyright 2005 ACM 1-59593-014-0/05/0009 ...$5.00.

contain many concepts that are too complicated to explain at the
beginning of a programming course.

The Kenya teaching language [2] solves this by presenting stu-
dents with a less complex selection of features and abstracting away
from concepts that a novice programmer might not understand.

While knowledge of a programming language is important, it
cannot be denied that in modern software development, produc-
tivity and efficiency is increased by the use of powerful develop-
ment tools. Particularly common are integrated development envi-
ronments (IDEs) that allow the programmer to quickly manipluate
code and to automate repetitive tasks.

To be able to program effectively, it is desirable that students
learn not only programming concepts, but also to make good use of
the tools provided by professional IDEs. However, many IDEs have
a steep learning curve and even experienced programmers may take
some time before they can use a tool to its full advantage.

We present a plugin for Eclipse that enables users to program in
Kenya using the Eclipse IDE, and to make use of a subset of the
features that are currently available in professional tools for Java
development. This allows them to work more effectively when
moving on to the full Java language and the rich set of IDE fea-
tures that exist for it.

Tools are designed to aid and support programmers, helping them
to produce high quality software. As we are introducing tools to
novice programmers, we aim to harness these tools to support the
particular needs of a beginner. In teaching programming to students
in our university, we have noticed that the main problems students
have are with learning good programming style. In our Kenya plu-
gin for Eclipse, we have developed a style critic that detects stylistic
problems in students’ code, suggesting improvements as they work.

In the remainder of this paper we give some background on the
Kenya language and the Eclipse development environment, in Sec-
tion 3 present details of our support for detecting stylistic problems,
and in Section 4 describe the implementation of the tool. We con-
clude by discussing related work and future directions.

2. BACKGROUND

2.1 Kenya
In order to become good programmers, students need to be able

to concentrate on understanding the problems that they are solving,
and apply appropriate techniques and algorithms. This can be im-
peded by the need to understand the syntax of a complex program-
ming language. Languages specifically designed for teaching pro-
gramming provide simple syntax, but students are often not happy
learning a language which they do not see as being real world.

For the past few years we at Imperial College London have had
success using the teaching language Kenya [1, 2], which we devel-

Figure 1: Kenya with style checks running in Eclipse

oped (and is now used in a number of universities around world,
particularly in Italy and South America). The Kenya language
is similar to Java but focuses on an imperative subset of the full
language [4]. Kenya programs can be automatically translated to
equivalent Java programs so that students can see what they would
write if they were using full Java. This makes Kenya a useful step-
ping stone towards learning Java.

It has been well documented that language complexity impedes
learning to program [3, 5]. Most alternative approaches to min-
imising this complexity involve providing a skeleton into which
students plug their code. Our experience with such techniques is
that, as students are only required to write fragments of code, they
leave some students not knowing how to construct a complete pro-
gram. Our solution to the problem is to have designed a complete
but small language that enables students to gain confidence because
they write entire programs.

2.2 Eclipse
An important part of modern software development is the use

of tools. The popularity of IDEs like Eclipse has shown the en-
hancements in productivity that developers can experience by hav-
ing good tool support. An IDE like Eclipse with the Java Devel-
opment Tools installed provides a large amount of functionality.
Unfortunately, it can be difficult even for an experienced program-
mer to learn how to use powerful tools effectively, even although
they may be fluent in the programming language. This is especially
true if they have previously been using basic command-line tools.

As teaching languages are not typically used beyond the univer-
sity environment, they are often not supported by powerful tools.
For example, source must often be edited in a standalone text editor,
which will probably not provide features such as auto-completion,
integrated help or debugging facilities. The lack of tools for teach-
ing languages can lead to students not realising the benefit that can
be gained by using the tools that are available for developing in
more fully-fledged languages.

Following the approach that we have taken with programming
languages, using a simplified version of the language as an intro-
duction to the full language, we would like to introduce the basics
of Eclipse early in the degree course. Students will then become
familiar with the patterns and idioms of using the IDE while work-
ing with our teaching language before moving on to using its full
power when working on larger projects, easing the learning curve.

We have integrated the Kenya language as a perspective in Eclipse.
A perspective determines the visible actions and editor views that
are available on screen. By selecting a small set of tools and ideas
from the Java Development Tools (for example the notion of a
project, the package explorer, the tasks/problems list) we allow stu-
dents to learn a simple language in a simple but supportive environ-
ment. We advocate introducing Eclipse terminology early, so the
‘small’ programming language feels more real. Then as students
progress from Kenya to Java they will be able to take a similar
small step up to the full Eclipse IDE for Java.

3. STYLE CHECKING
We have found that many of the comments that a human tutor

makes about student programs refer to coding style. We try to
teach students that their programs must be read as well as writ-
ten, because it is likely that other programmers will one day have
to maintain their code.

Therefore, a tutor may consider a program to be ‘badly written’
even if its algorithm is efficient and it produces the correct results at
run-time. The tutor could think this for many reasons: logical flow
is unclear, literal values are scattered throughout the code rather
than constants, or method definitions are overlong need refactoring.

While an IDE like Eclipse provides as-you-type detection of com-
pilation errors, we would like it also to advise on stylistic issues.
Thus, in a teaching environment, it would play the role of a human
tutor, providing continuous support and advice.

For instance, stylistic comments often refer to redundancy in

Boolean expressions. The two code fragments below compile suc-
cessfully and execute with the same results. We would like students
to be encouraged to write the second as it is clearer, more succinct
and more efficient.

boolean b;
...
if (b == true) {

// do something
}

would be better written as:

boolean b;
...
if (b) {

// do something
}

Fowler and Beck identify a number of structures that may appear
in code that are referred to as ‘code smells’ [6]. These include: du-
plicated code, over long methods and long parameter lists. There
has been some previous work on automatically detecting these fea-
tures in program code [9, 10, 12]

We have built features into our tool that allow patterns of ‘bad
style’ in programs to be detected and reported as code is written
within Eclipse, in the same way that data and control flow analysis
is performed. We concentrate on the good programming idioms en-
couraged at Imperial College having taught thousands of program-
mers over many years. The tool gives students continuous feedback
on the quality of the code they are writing, increasing the degree to
which the IDE can support the learning process.

3.1 Detection
As the user types their program source, our tool analyses the

code to detect a number of common patterns of bad programming
style. Whenever the user stops typing for a few seconds, the current
code is parsed and checked for syntactic, type and style errors.

Before we detect stylistic errors, we require that the written code
is free from syntactic and type errors. This helps to ensure reliable
detection as we can process the abstract syntax tree (AST) rather
than the plain source text. It is in any case sensible to have the
student fix any more serious (compilation) errors before attempting
to correct their style. Apparent style problems may have resulted
from other errors.

Once the code can be parsed and compiled, it is analysed making
use of the AST representation. The advantage of using the AST
over using, say, regular expressions is that we reduce the numbers
of false positives resulting from, for example, analysing code that is
in fact commented out. Working with the AST also gives flexibility
to do more sophisticated analysis.

We currently check for a number of different style errors includ-
ing: over-complicated boolean expressions; use of “magic” strings
or numbers, which should be constants; missing breaks or default
cases in switch statements; over-long functions.

When one of these patterns is recognised, it is underlined in yel-
low in the editor, and a warning triangle is placed next to the rel-
evant line (see Figure 1). Clicking on this displays a message ex-
plaining the problem.

Each style check is implemented as a visitor that traverses the
AST looking for particular patterns of nodes. For example, when
detecting redundancy in boolean expressions, all boolean expres-
sions are located. A more finely grained visitor then traverses each
expression to check for possible reduction. Any possible reductions
are then offered as a suggestion to the user, which, if accepted, re-
places that part of the tree.

3.2 Suggestion and Correction
Eclipse’s Java Development Tools support the notion of a quick-

fix. When an error is detected, Eclipse will often be able to suggest
a possible fix or fixes that will alleviate the problem. Selecting a
fix causes Eclipse to repair the code automatically. We have used
this idiom to allow automatic correction of some stylistic prob-
lems. Here is an example. Consider the following very simple
program that tests whether a number is negative. This is perfectly
valid code, but an experienced programmer will see ways that the
isNegative() function can be improved in terms of style.

void main() {
print(isNegative(-4));

}

boolean isNegative(int n) {

if (n < 0 == true) {
return true;

} else {
return false;

}
}

If we write this program in our Kenya/Eclipse tool, the line be-
ginning if (n < 0 is underlined in yellow. We get a style
warning saying that our boolean expression contains redundancy
which can be reduced. Applying the tool’s suggested quick-fix
changes the function to the following:

boolean isNegative(int n) {

if (n < 0) {
return true;

} else {
return false;

}
}

We now get another warning, saying that the if statement can be
replaced by a single return statement, as if the condition is true, we
return true, if it is false, we return false. Applying the suggestion
yields the following, much more elegant, code.

boolean isNegative(int n) {

return n < 0;
}

It is important to note that at each stage it is the programmer’s
responsibility to choose to apply a quick-fix. We want the novice
programmer to go through the mental processes of having their mis-
take pointed out to them, and then fixing it (even if they do not
change the code manually), so that they learn from their mistakes.
The mistakes that are highlighted in the above example are typical
of the sort of errors that we see time and again in solutions to exer-
cises produced by beginners. The tool we have developed provides
continuous feedback and support for identifying problems and sug-
gesting improvements in students’ code as they write it, rather than
having to wait for feedback from a marker days or weeks after the
exercise is submitted.

4. ARCHITECTURE
We have implemented a plugin for Eclipse that provides a Kenya

perspective. This borrows idioms from the Java Development Tools
provided with Eclipse, but trims down the workbench to provide a
minimal working environment. To ensure consistency between the
Kenya and Java perspectives, we have hooked our error checking
and style guidance routines into the problems view, and used the

run and debug options in the toolbar to interface with the Kenya
interpreter.

In developing the Eclipse plugin, we strived to maintain the abil-
ity to run Kenya as a standalone application based on the same
code. This has been achieved by separating the Eclipse features
from the core Kenya features, and led to a modularised architec-
ture.

The initial requirements that had to be met in the implementation
of the style guidance module were: extensibility - easy addition
or removal of style checks; configurability - disabling individual
style checks; independence - Kenya/Eclipse should work without
the style module; efficiency - processing must be done in the back-
ground, not block the GUI; assistance - allowing users to apply
automatic correction if possible or applicable.

The easiest way to achieve extensibility and independence was
to make use of the ability to declare extension points in Eclipse plu-
gins. This means that in future extra style checks could be added as
plugins to our plugin, without having to recompile Kenya/Eclipse.

For each style pattern there is one StyleChecker (derived from
a common base class). These are responsible for detecting errors
and for defining a set of possible automated solutions (including
explanation). By making use of the editor architecture, the problem
location is highlighted using so-called markers and annotations. At
the same time, the solutions are cached to allow fast access.

Developers who want to write their own StyleChecker only have
to write code for detecting the problems and declare the solution (if
any). All remaining issues (to do with markers, annotations, regis-
tering solutions) are functions maintained by the base class and the
framework. This allows for little overhead when considering the
addition of a new check for a different problem.

5. RELATED WORK
Other teaching languages that address the problems of teaching

full Java as in introductory language include BlueJ [3] and JJ [5].
BlueJ has an interactive programming environment, where pro-
grams are constructed by interactively creating Java objects rather
than explicitly writing code. This can help with the understanding
of object-oriented principles, but may, as discussed earlier, lead to
students not being able to code complete programs from scratch.
JJ, developed at Caltech, provides an online environment for learn-
ing Java. Neither of these approaches introduce students to tools
that are used in industry.

GILD [11] is an Eclipse plugin from the University of Victoria in
California. The tool is aimed directly at students learning program-
ming with Java. It has integrated support for marking lab work.
GILD’s emphasis seems to be on learning in a classroom environ-
ment. There seems not to be a great deal of support for helping
individuals learn programming. Some advice on erroneous code is
offered, but with no suggestions as to how to correct it. Similarly
Class Compass [7] aims to improve student-teacher communica-
tion using internet tools, rather than providing explicit program-
ming help.

There have been a number of projects aiming to automatically as-
sess the quality of code, including calculating metrics on code [12],
trying to detect “anti-patterns” [9], or violation of coding conven-
tions [8]. However, we do not know of any other work that tries
to address fundamental issues of style, or provide the immediate
feedback that our tool supports.

6. CONCLUSIONS
We have presented a plugin for Eclipse to support the Kenya

teaching language. By integrating the language that we use for

teaching introductory imperative programming with an industry stan-
dard development environment, we can introduce students to tools
at the same time as teaching programming concepts.

Building on the basic editor and code management functions of
the IDE, we have built a system for analysing and suggesting im-
provements to a student’s program in terms of programming style.
This allows some of the support offered by human programming tu-
tors, a comparatively scarce resource, to be given by the machine.

In future we would like to build on the range of stylistic checks
that we can perform, and perhaps provide a method for users to
customise the checks, as different people do prefer different styles.
We would also like to adapt the style checking engine to work with
full Java (or C# or C++) code, rather than just Kenya.

The tool will be available for download from summer 2005 from
http://www.doc.ic.ac.uk/kenya.

7. ACKNOWLEDGMENTS
We would like to acknowledge Tristan Allwood and Matthew

Sackman, who reimplemented the Kenya system in 2004. Their
work made the integration with Eclipse a lot easier. We would also
like to thank Susan Eisenbach, who teaches the introductory pro-
gramming course at Imperial for her insights into common stylis-
tic mistakes. For financial support, we would like to acknowledge
IBM under the Eclipse Innovation Award scheme.

8. REFERENCES
[1] T. Allwood, R. Chatley, and M. Sackman. Kenya. Technical

report, Imperial College London,
http://www.doc.ic.ac.uk/kenya, 2004.

[2] R. Chatley. Java for Beginners. Technical report, Imperial
College London, http://chatley.com/kenya/thesis, 2001.

[3] David J. Barnes and Michael Kolling. Objects First with
Java, A Practical Introduction using BlueJ, 2nd ed. Prentice
Hall / Pearson Education, 2004.

[4] S. Eisenbach. Kenya notes. Technical report, Imperial
College London,
http://www.doc.ic.ac.uk/˜ sue/121/index.html, 2004.

[5] D. Epstein and J. Motil. JJ. Technical report, Caltech, http:
//www.publicstaticvoidmain.org/, 2004.

[6] M. Fowler. Refactoring: improving the design of existing
code. Addison-Wesley Longman Publishing Co., Inc., 1999.

[7] M. Mervis. Class Compass. Technical report, Mervis
Learning Designs, http://www.classcompass.com, 2005.

[8] H. Oak. Three tools that make Java code review painless and
effective. Technical report, Builder.com,
http://builder.com.com/5100-6370-5031836.html, 2003.

[9] Scott Grant and James R. Cordy. Automated Code Smell
Detection and Refactoring by Source Transformation. In
IEEE Working Conference on Reverse Engineering, 2003.

[10] F. Simon, F. Steinbruckner, and C. Lewerentz. Metrics based
refactoring. In CSMR, pages 30–38, 2001.

[11] M.-A. Storey, D. Damian, J. Michaud, D. Myers, M. Mindel,
D. German, M. Sanseverino, and E. Hargreaves. Improving
the usability of eclipse for novice programmers. In eclipse
’03: Proceedings of the 2003 OOPSLA workshop on eclipse
technology eXchange, pages 35–39, New York, NY, USA,
2003. ACM Press.

[12] E. van Emden and L. Moonen. Java quality assurance by
detecting code smells. In Proceedings of the 9th Working
Conference on Reverse Engineering. IEEE Computer
Society Press, Oct. 2002.

