Painless Plugins

RobertChatley

SusarEisenbach

Jef Magee

Departmenbf Computing
Imperial CollegeLondon
180Queens Gate,LondonSW72AZ

E-mail: {r bc, sue, j nm}@loc. i c. ac. uk

Abstract

Using pluginsasa medanismfor evolvingapplications
is appealing but current implementationsare limited in
scope Pluginsare optionalcomponentsvhich canbeused
to enablethe dynamicconstructionof flexible and complex
systemspassingas mud of the configuiation management
effort as possibleto the systenratherthanthe user allow-
ing gracefulupgrading of system®ver time without stop-
ping and restarting In this paperwe explore the design
spaceof plugin architectures,presenta framevork that ad-
dresseghe aforementionedssues,and demonstate some
examplesof applicationsimplementedisingour plugin ar-
chitectue.

1 Introduction

Maintenances averyimportantpartof the softwarede-
velopmentprocess. Almost all software will needto go
throughsomeform of evolution over the courseof its life-
time to keeppacewith changesn requirementandto fix
bugsandproblemswith thesoftwareasthey arediscovered.

Traditionally, performingupgradesfixesor reconfigura-
tionsonasoftwaresystemhasrequiredeitherrecompilation
of thesourcecodeor atleaststoppingandrestartinghesys-
tem. High availability andsafetycritical systemshave high
costsandrisks associateavith shuttingthemdown for ary
periodof time [18]. In othersituations,althoughcontinu-
ousavailability may not be safetyor businessritical, it is
simply incorvenientto interruptthe executionof a pieceof
softwarein orderto performanupgrade.

Unanticipatedsoftware evolution tries to allow for the

evolution of systemsn responséo changesn requirements

thatwerenot known at the initial designtime. Therehave
beena numberof attemptsat solving theseproblemsat
the levels of evolving methodsandclasses[5, 7], compo-

nents[13] andserviceq19]. In this paperwe consideran
approacho softwareevolution at the architecturalevel, in
termsof plugin components.

In [18] Oreizy et al identify threetypesof architectural
changethat are desirableat runtime: componentaddition,
componentremoval and componenteplacement.We be-
lieve thatit is possibleto engineera generalisednd flexi-
ble pluginarchitecturavhichwill allow all of thesechanges
to be madeat runtime. Here we presenta framework that
allows systemevolution through componentaddition. In
future we hopeto go on to provide for componentemoval
andreplacement.

The benefitsof building software out of a numberof
moduleshave long beenrecognised Encapsulatingertain
functionalityin modulesandexposinganinterfaceevolved
into componenbrientedsoftware development/4]. Com-
ponentscan be combinedto createsystems. An impor-
tantdifferencebetweerpluginbasedarchitecturesndother
componenbasedarchitecturess that pluginsare optional
ratherthan requiredcomponents.The systemshouldrun
equally well regardlessof whetheror not plugin compo-
nentshave beenadded.Pluginsallow the possibility of eas-
ily addingcomponentgo a working system,addingextra
functionality asit is required. Pluginscan be usedto ad-
dresghefollowing issues:

e theneedto extendthefunctionality of a system,

e the decompositiorof large systemsso that only the
softwarerequiredin a particularsituationis loaded,

e the upgradingof long-running applicationswithout
restarting,

e incorporatingextensiongdevelopedby third parties.

Plugins have previously beenusedto addresseachof
thesedifferentsituationsindividually, but the architectures
designedhave generallybeenquite specificallytargetedand

L

«

w

W

[

e 6

> ¢
[)

e 6

extendingthe mainapplication

extendingpluginsto form a chain

connectingo multiple components

Figure 1. Some possib le configurations of plugins

therefordimited. Herewe presentigeneralisedramenork
thatcoulddealwith ary of them.

Extending the functionality of a systemis something
thatis often necessaryasit is not possibleto know all of
the requirementdor the systemwhenit is initially devel-
oped[24, 3]. Forinstanceconsiderthe developmentof a
web browser Over time new mediatypeswill be devel-
opedandpeoplewill wantto usethemontheweh In order
to view thesenew mediatypes(for instancenew videofor-
mats,or documentypeslik e Scalable/ectorGraphicq23])
extracodewill haveto beaddedothebrowser It is notpos-
sibleto know all of thefuturemediatypeswhenthebrowser
isinitially developed putit is undesirableo haveto release
anew versionof the entirebrowserevery time thatsupport
for anew mediatypeis added.By providing a mechanism
by which extrafunctionality canbe pluggedin, the browser
could be incrementallyupgradedas new featuresare de-
veloped. An exampleof this is Macromedias plugin [15]
which allows their Shockwave Flashanimationsto be dis-
playedin popularwebbrowsers.

With large systemsit is commonthatdifferentusersre-
quire different subset=of the total available functionality.
If everyonehasto have all of the functionality, this may
leadto unnecessaryseof memoryandotherhardware. If
theprogramcanbe modularisecandthe modulescombined
in configurationgailoredto eachindividual user thenre-
sourceusagecanbeminimised.Also, userawill beexposed
to aninterfacetailoredto their needsandthe softwareven-
dor can sell differentelementsof functionality separately
Pluginscanallow for this.

An exampleof suchmodularisatioris the Eclipselnte-
gratedDevelopentEnvironment[17]. It is possibleto work
with numerougprogrammindanguage thisdevelopment
ervironment,andaddingpluginsgivessupportfor the dif-

ferentlanguagesequiredby differentdevelopers. This is
achieved without all developershaving to install the tools
for all languagespnly the subsethatthey require.

Upgradinglong running applicationsis often a prob-
lem. Using traditional software models, or even compo-
nentbasedsoftware, it is not normally possibleto change
the configurationof a system(especiallyin termsof adding
new functionality) without halting executionandrestarting
the application. This is particularlya problemwith safety
critical systemsande-commercendotherbusines<ritical
seners. In a more everydaycontext it is justincorvenient
for usersto have to stopandrestarttheir applicationsn or-
derto performupgradesPluginscanallow for the possibil-
ity of addingcodemodulesto reconfigurea systemwithout
having to restart.

Extensionsto applicationsare often developedby spe-
cialist third party companiesFor instance companiespe-
cialising in computervision technologymay write exten-
sionsto majorvideoandfilm processingoftware. The de-
velopersof the mainapplicationsareunlikely to be willing
to releaseheir proprietarysourcecodeto third partydevel-
opers,yet they may wantto allow their applicationsto be
extended.Providing a plugin extensionmechanisnallows
for this, as extensionscanbe purchasedind addedto the
systenmseparately

Pluginshave beenusedin existing systemsbut gener
ally in a fairly restrictedway. Eitherthereare constraints
on what can be added,or creatingextensionsrequiresa
lot of work on behalf of the developer writing architec-
tural definitionsthatdescribehow componentganbecom-
bined[17]. We believethatit is possibleto engineelamore
generalisedand flexible plugin architecturenot requiring
theconnectiondetweercomponentso beexplicitly stated.

In theremaindeof this paperwe presentway of think-

1C1 1

Figure 2. Chaining with cardinality
straints

con-

ing aboutandmodellingflexible plugin architecture®ased
on a familiar analogy We explore the designspaceusing
this analogy We then describethe requirementsand im-

plementatiorof a framework for managingthe addition of

pluginsto systemsandpresenexampleshatuseit. Finally

we discusgelatedwork andfuture directions.

2 An Analogy

We think of the way that componentdit togetherin a
plugin architectureas being similar to the way that pieces
of ajigsaw puzzlefit together As longasajigsaw piecehas
theright shapegeg, it canconnecto anothempiecethathas
acorrespondingpole.

The main applicationprovides a numberof holes,into
which componentsproviding extra functionality can plug.
Plugins are optional. The holes representan interface
known to the main application, and the pegs represent
classesn the plugin componentghat implementthis in-
terface. The interface definesthe signatures of methods
in the class. If anapplicationhasan interfacethat allows
othercomponentso extendit, andaplugin containsaclass
that implementsthis interface,a connectioncan be made
betweerthem.Thepeg will fit into the hole. This situation,
addingcomponentso a centralapplication,is shovnin the
first exampleFigurein 1.

Thinking aboutpluginsin thisway, it becomeglearthat
someothermoresophisticate@donfigurationsvould bepos-
sibleif we allow plugincomponentso have holesaswell as
pegs,i.e. if we allow pluginsto extendotherpluginsrather
thanonly allowing themto extendthe mainapplication.We
canthenhave chainsof pluginsasshown in the middle ex-
amplein Figurel. An exampleof this situationmight be
if the main applicationwerea word processarwhich was
extendedby pluggingin agraphicseditor, andthis graphics
editorwasin turn extendedby pluggingin a new drawing
tool.

It is possibleghatacomponenhassereralholesandpegs
of differentshapegprobablythe mostcommonsituationin

D G

Video Player

mC

Figure 3. Non-determinism

Subtitles

traditionaljigsaw puzzles).This canleadto more compli-
catedconfigurationsof componentssuchas thoseshavn
in the rightmostexamplein Figure 1. Sucha configuration
might be usefulin a situationwherethe main application
was, say an integrateddevelopmentervironment,the first
pluginwasahelpbrowser andtheseconda deluggingtool.
Thedeluggingtool plugsinto thethe mainapplicationbut
alsointo thehelpbrowsersothatit cancontritutehelprele-
vantto dehugging.In thiswaythehelpbrowsercandisplay
help provided by all of the differenttoolsin the IDE, with
thehelpbeingstoredocally in eachof theseparateools. It
is clearthatwe cannotrepresenall possibleconfigurations
of pluginsusingthesesimpleplanarjigsaw representations,
but they provide a usefulmetaphorifor thinking aboutwhat
mightbepossible.

If we think onceagainaboutthefirst casethenit seems
thatwe shouldbe ableto keepon addingpluginsto the ap-
plicationaslong asthey implementthe right interface,but
there might be caseswherewe want to put limits on the
numberof pluginsthatcanbe attached.This might be the
casewhen eachplugin thatis addedconsumesa resource
held by the mainapplication,of which a limited quantityis
available. Cardinality constraintscanalsobe employed to
constrainthe shapeghatthe configurationcantake.

To seethe effect of using cardinalities,considera main
applicationwhich acceptsa certaintype of plugin, without
a restrictionon how mary pluginscanbe added. If three
compatiblepluginsareadded,all threewill beloadedand
connectedo the system. If, however, we changethe car
dinality of theinterfaceto be < 2, i.e. any numberupto a
maximumof two, aftertwo pluginshave beenaddedathird
cannotbe. It mightbe possibleto remove plugin1 or 2, and
to replaceit with plugin 3, but it is not possibleto plug in
all threeat the sametime. In practicethoughit seemghat
thetwo cardinalitiesusedmostoftenwill probablybe < 1
and“any number”.

Revisiting the chainingpatternghatwe saw earlier(see
the secondexamplein Figure 1), but employing cardinal-
ities, we canchaintogethera numberof differentcompo-
nentsof the sametype, by having eachprovide andaccept
onepey of the sameshapglimiting the numberof pegsac-
ceptedrequiresa cardinalityconstraint seeFigure?2). This
is almostlike a Decoratorpattern[6] for components.A
decoratoconformsto theinterfaceof thecomponentit dec-
oratessothatit addsfunctionality but its presencaes trans-
parento thecomponensclients. Sucha situationmightbe
usefulif, for instanceye wantedto chaintogethewideofil-
ters,eachof whichtook avideostreamasaninputandpro-
videdanotherstreamasanoutput.Eachfilter couldperform
a differenttransformation(for examplecorvertingthe im-
ageto blackandwhite, or invertingit) but the components
could be combinedin ary order, regardlesof the number
in the chain. Pluginswould allow this configurationto be
changedlynamicallyovertime.

It is our aim to provide the describedplugin architec-
turesin self-assemblingystemq8]. It shouldbe possible
tointroducenew componentsvertime. For eachadditional
componenthesystemshouldmake connectiongo join it to
theexisting systemin accordancavith its accepte@ndpro-
vided interfaces.It shouldnot be necessaryor the useror
developerto provide extrainformationabouthow or where
the componenshouldbe connectedasthey may not have
total information aboutthe currentconfiguration,or they
may just wantto delgyateresponsibilityfor managingthe
configurationto the systemitself. The plugin framework
shouldbeableto assembl¢éhe componentaccordingo the
typesof the classeshey contain.

Figure3 shavsapossibleconfiguratiorof avideoreplay
application. The main applicationdisplaysvideo streams
which aresuppliedby plugin componentsThe mixer com-
ponentmixestwo video streamsnto one, so canbe used
to add subtitlesto a film. In the figure a mixer and a set
of subtitleshave beenaddedto the application,anda film
sourcels aboutto beadded.Thefilm sourcecould connect
eitherto themixeror directly to thevideoplayer In thefirst
case the subtitleswill be appliedto thefilm, in the second
casethefilm andthe subtitleswill be displayedseparately
We would like to be ableto ensurethat the behaiour de-
siredby the provider of thefilm components implemented
or atveryleastto predictwhatwill happenin this case.We
needto know that the samething will happenif the same
componentarecombinedon differentoccasions.

It is desirablethatthe behaviour of self-assemblingys-
temscanbe madeto be deterministic:it shouldbe possible
to determinevhatconnectionsvill bemadewhenacertain
components addedto a certainconfiguration. To ensure
thatthisis thecase provision needgo bemadefor defining
astrat@y to decidebetweerdifferentpossiblebindingsin a
predictablevay. Thetechniquewe usefor thisis described

in moredetailin thefollowing sections.

3 Software

We have implementeda generalisednfrastructurefor
our plugin architecture.In this sectionwe describethe re-
guirementsand detailsof the implementationand present
an example applicationwhich demonstrateshe details of
working with the extensionmechanismWe have alsoused
this technologyto implementan extensiblearchitectureor
a large pieceof analysissoftware,anddescribethatin the
following subsection.

We call our plugininfrastructureMagicBeansThename
comesfrom the fact that what endedup being developed
was quite similar in conceptto Sun's JaraBeang11], but
they requirethatthe developerprovidesinformationabout
thebeanin amanifestfile.

3.1 Requirements

To enablethe evolution of softwaresystemghroughthe
additionandcoordinationof plugin componentst runtime,
we requiresomekind of runtimeframeawork to bebuilt. Ex-
aminingthe differentcaseswe consideredn termsof the
modelin the previous section,we have a numberof func-
tional requirementgor the system.

The framework shouldform a platform on top of which
anapplicationcanrun. The platformshouldlaunchthe ap-
plication,andfrom thenonmanageheconfiguratiorof plu-
gin components.

We wantpluginsto work asautomaticallyaspossible so
that the right interfacesand classesrom eachcomponent
are detected)oadedand boundby the framewvork without
thedeveloperhaving to doary extrawork. Thematchingof
componentshouldbetakencareof by the framework.

It should be possibleto plug componentgogetherin
chainsand other configurationsas seenin Figure1. The
configurationshouldbe managedntirely by the platform.

Using the plugin platform shouldhave minimal impact
onthedeveloperor the user(or systemadministrator).The
developershouldnot be forcedto designtheir softwarein
a particularway, to make extensve calls to an API, or to
write complex description®f theircomponentén arny form
of architecturadefinitionlanguage Thereshouldbeno par
ticular installationprocedurghatneedso be gonethrough
in orderto adda componentsimply allowing the platform
to becomeaware of the new componens location should
beenough.

The mechanismby which new componentsare intro-
ducedto the systemshouldnot be prescribedby the plat-
form. It shouldbe possibleto easily adaptthe framewvork
to allow componentso beaddedn new ways,for instance:

App

Extension

~

Platform

Adder

Strategy

Figure 4. Platform architecture managing a two component application

locatedby auser or discoveredin thefilesystemor network
etc.

In orderto successfullydealwith resourcenanagement,
it shouldbe possibleto specify the maximum numberof
pluginsof a certaintypethatmay be connectedo acertain
interface.Themanagindgramework shouldensurghatsuch
cardinalityconstraintsareenforced.

In thecasethattherearemultiple possibleplacesvherea
new componentould be connectedo the system,it needs
to be possibleto definea stratayy for decidingwherethe
new componentshouldbe bound. Without this, we may
have an unpredictablesystemwhere combiningthe same
componentsn the sameorderwill producedifferentcon-
figurations which maywell behae differently, on different
occasions.

An exampleof usinga strateyy to dealwith suchasitua-
tionis givenin alatersection.

3.2 Implementing Plugin Addition

MagicBeanss implementedn Java,andallowsasystem
to becomposedrom a setof componentseachof whichis
comprisedf a setof Java classegndotherresourcegsuch
asgraphicdfiles) storedin a Jararchive.

The platform maintaindlists of all of the componentsn
thesystemandthebindingsbetweerthem.We make exten-
sive useof Java’s reflection[9] mechanisrmandthe ability
to definecustomclassloaderfl4].

Whena new pluginis addedto the systemthe platform
searcheghroughthe classesand interfacespresentin the
new componens Jarfile to determinehow it canbe con-
nectedo the componentsurrentlyin the system.

For eachcomponenttheplugin manageiterateghrough
all of theclassesontainednsidethe Jarfile, checkingeach

for compatabilitywith eachof the interfacesin eachof the
other componentsurrently in the system. For a classto

be compatiblewith aninterface,it mustbe a subtypeof the
interfaceandit mustnot be abstract.This matchingis per

formedusingJava’sreflection,customloadinganddynamic

linking featureswhich allow classego beinspectedatrun-

time. If a matchis found, a binding betweena classand

interface(andtheir associated¢omponentsjs addedto the

system.Theclassin questionis instantiated.

Any object can register with the platform as an ob-

sener [6], sothatit canbe notified whenever a new bind-

ing is madeto the componento which thatobjectbelongs
(i.e. thecomponentontainingthe classfrom which thatob-

jectwascreated).The platform calls a methodin eachob-
senerfrom thecomponenthatcontaingheinterface(hole)
thatwasmatchedpassingareferenceo the newly instanti-

atedobject(peg). A list of instantiategpegsis maintainedo
ensurahatin thecasewvhereacertainclassmplementser-
eraldifferentinterfacesthatclassis instantiatednly once,
ratherthanonceperinterface.The coderequiredto register
anobjectasanobseneris minimal. All thatis requiredis

thefollowing:

class A inplenents Notifiable {
Pl ugi nManager . get I nst ance() . addCbserver (this);

voi d pl ugi nAdded(Onject o) {

//do something with the new plugin

The Notifiable interface just declaresthe pl ugi -

nAdded() methodwhich the platform calls to notify the
obsenerthata new plugin hasbeenconnectec&ndpasshe
objectreference.

In ourimplementatiortheclassComponents asubclass
of ClassLoaderA Components associatedvith a particu-
lar Jar archive and then usedfor instantiatingarny classes
within that Jar file as necessary Using this technique
gives us the benefitthat for any objectin the application
we canjustcallitsget O ass() . get O assl oader ()
methodto identify which Componentt is associateavith,
without having to keep our own records (keeping such
recordswould be difficult anyway asunlike C++, Java has
no operatoroverloading,and so addingcodeto run every
time newis usedwould bedifficult).

We allow cardinalityconstraintdo bedefinedfor certain
interfaces,by allowing the developerto include a special
constantcar di nal i ty in ary of the Java interfacesin
their componentskor instance:

public static final int cardinality = 6;

The plugin managerchecksfor the presenceof sucha
constanwhenit examinesthe interfacespresentn a com-
ponent.It thenkeepsa countof how mary componentsre
boundto eachinterfacein the systemand ensureghatthe
cardinalityconstraintsarenot broken. If thedeveloperdoes
not specifya constraintarny numberof component®f the
correcttypemaybeboundto aninterface.

There are various mechanismghrough which plugins
couldbeintroducedto the systemandwhich is choserde-
pendson the developerand the application. Possibilities
includethatthe userinitiatesthe loading of pluginsby se-
lectingthemfrom a menu,or locatingthemin the filesys-
tem, thatthe applicationmonitorsa certainfilesystemoca-
tion for new plugins, or thatthereis somesort of network
discorery mechanisnthattriggersevents,in the mannerof
Sun’s Jini [12]. MagicBeansdoesnot prescribethe useof
ary of these.lt usesa known filesystemlocationasa boot-
strap,but componentsvhich discoser new plugins canbe
addedto the platform in the form of plugin components
themseles(the platform managests own configurationas
well asthatof the targetapplication)which implementthe
Adder interface. Figure 4 shovs an example of the plat-
form running, managingan applicationextendedwith one
plugin, with one Adder andone Strateyy pluggedin to the
platformitself. EachAdderis runin its own thread sodif-
ferenttypescanoperateconcurrently Whenever an Adder
becomeswareof anew plugin, it informstheplatformand
the platform carriesout the binding process We have writ-
tenexampleapplicationghat usethe first two mechanisms
proposedn thelist above for locatingnew plugins.

3.3 An Example

The Virtual Fish Tank is an exampleapplicationwhich
demonstratethe useof pluginsusingthe MagicBeansn-
frastructure.The basicapplicationdisplaysan uninhabited
fish tank on the users screen. Over time differentinhabi-
tantscanbe addedto the tank. Theseinhabitantsare sup-
pliedin theform of plugin components.

Initially the systemstartsoff with only the Tank com-
ponent. In orderto be addedto the tank, a prospectie in-
habitantmust have a classthat implementsthe following
interface(in termsof the jigsav analogy Tank hasa hole
with a shapedefinedby thisinterface):

interface I nhabitant {

final static int cardinality = 6;
nove() ;

draw() ;
}

All Inhabitantscan thereforebe asled to move them-
seles,andbeasledto draw themselesonthescreen.The
constantar di nal i ty is definedto instructthe platform
thatthe maximumnumberof classesmplementingthisin-
terface that can be bound simultaneousliyto the compo-
nent containingit is 6 (to prevent the tank becomingtoo
crowded). The platform keepsa counterwhich is decre-
mentedeverytime anotherclassimplementingheinterface
is boundto the interface. If the counterreachesero, no
morebindingscanbe madeto this interface.

It is possibleto adda Weedto thetank. A Weedcom-
ponentcomprisenly oneclass(but it is still enclosedn a
Jarfile), which knows how to drawv aweed,andwhenasled
to move will do nothing. This classprovidesthe peg that
allows the Weedcomponento connecto the Tank.

A Goldfishontheotherhandis acomponentomprising
two classes:

class Fish {

} drawm() { ... }

cl ass ol dFi sh extends Fish
i mpl ement s | nhabitant {

getColor() { ... }
move() { ... }

}

This componentis implementedaccordingto the tem-
platemethodpattern[6]. Behaviour commonto all typesof
fish is definedin the superclasswith the subclasgrovid-
ing the detail specificto Goldfishaboutits colourandhow
it moves. The GoldFishclassprovidesthe peg to fit in an
Inhabitanthole.

Tank

Weed

Figure 5. Adding a Predator to the fish tank

The Platinumfishis implementedn thesameway (it has
adifferentcolour, andmovesa bit fasterthanthe Goldfish).
In fact,the Fishclassin bothcomponentss identical,how-
ever it is still necessaryo includeit in both components.
It is notknown which of thetwo will be addedfirst (if they
areaddedatall) andsoeachcomponenmustindependently
provide all of theresourced needsn orderto function.

To allow a more comple< configurationto be con-
structed)nhabitantanbeextendedo includeaninterface
thatacceptsa PredatorPredatorganeatotherinhabitants.

interface Predator {

void eat(Inhabitant food);

}

Figure5 shows a situationin which a Hungryfish,whichis
both an Inhabitantand a Predatoris aboutto be addedto
the Tank. The Hungryfishwill be boundto the Tankby its
Inhabitaninterface.It will alsobeboundto oneof theother
Inhabitantswhich it seesasfood, by its Predatolinterface.
In the situationshovn, which Inhabitantthe Predatomwill
beboundto is notclear, therearetwo possibilities.In order
to have a deterministicsystem somesortof stratgy needs
to be definedthat governsthe linking behaiour. In this
casea suitablestratgy might be that Weedsshould take
precedencever Fish (we wanthungryfishto eattheweeds
in preferenceo eatingotherfish).

This stratey canbeimplementedy providing a prefer
encefunctionthatthe platformcanuseto comparewo can-
didatebindings. Stratgiesallow the platformto performa
pairwisecomparisorbetweenbinding targetsto determine
to which existing componenpluginsshouldbe bound. As
long the available strat@ies provide preferencefunctions

& virtual Fish Tank

Add

~=lol x|

Figure 6. The Virtual Fish Tank application

for all situationswherethereis a possiblechoiceof bind-
ing tamets, the systemis deterministic. As the very na-
ture of plugins meansthat the types of componentghat
needto be decidedbetweenare not necessariljknown to
the developerof the platform, we have madestratgjiesbe
pluginsthemseles. They canbe addedto the platform as
new typesof plugin areintroducedo the system.(It should
only bepossibleo bind stratgy pluginsdirectlyto theplat-
form, asthey are designedto solve the problemsof non-
determinismandcannotdo thisif they themselesaresub-
jectto suchproblems- seeFigure4). Stratgyiesimplement
thefollowing interface:

interface Strategy {

Bi nding prefer(Binding this ,
Bi nding that);

The differenttypes of Inhabitantcan be addedin ary
combinatiorupto sixin all, sincethatis thecardinalitycon-
straintof the Inhabitantinterface.Figure6 shons a screen-
shotfrom the applicationrunningwith oneWeed,onePlat-
inumfishandtwo Goldfishhaving beenadded.If acompo-
nentis loadedmultiple times, Java’s default classloading
behaiiour meansthat the classeswill be identified as al-
readyhaving beenloaded andthecached:opiesusedrather
thanreloading.

It is possiblethat under certain circumstanceshis be-
haviour might be undesirable.If, for example,two differ-
entpeoplecreateccomponentsor thefishtank,implement-
ing themusingdifferentversionsof a popularlibrary class
(which they packagento their componentthenit may be
the casethata userwantsto load both of theseat the same
time, sideby side,sothateachcomponentisesthe correct
versionof the library. An alternatve loading mechanism
couldbewritten thatloadsseparateopiesof the classside

by side. This cutsdown on re-usewhereidentical codeis
providedby two differentplugins,but doesavoid problems
causedy conflictingversions.

In general,the situationthat we would like to achieve
is onein which separateopiesof librariescanbe loaded
if they arenot compatible,but thatlibraries shouldbe up-
gradedandsharedn asuitableway if they arecompatible,
in orderto hold the minimum possiblenumberof copiesof
eachlibrary in memoryatary time.

It is possiblethat later plugins provide a later version
of a classthatan earlierplugin alreadyprovides. To avoid
duplicationin memory it is desirableto upgradethe exist-
ing classto the new versionif the two are compatible. A
mechanisnfor upgradingalreadyloadedclassesvould be
requiredto do this. In [2] a methodis suggestedasedon
JMX, but this is not particularly corvenient,asall objects
mustbeinstantiatedn a particularway in orderto take ad-
vantageof it. We have prototypeda solutionbasedon the
Java HotSwap technologydescribedn [5]. In future work
we hopeto incorporatesucha mechanisminto the plugin
platform.

3.4 Extensible LTSA

ThelLabelledTransitionSystemAnalyser(LTSA)[10] is
a Java applicationwhich allows systemgo be modelledas
labelledtransitionsystems.Thesemodelscanbe checled
for variouspropertiesmakingsurethat eithernothingbad
happengsafety)or thateventuallysomethinggoodhappens
(liveness)The corefunctionalityof LTSA is to take textual
input in the form of the FSP processcalculus,to compile
this into statemodelswhich canbe displayedgraphically
andanimatedandto checkpropertiesof thesemodels.

Ontop of this corefunctionality, variousextensionshave
beenbuilt, notablyto allow moreillustrative animationsof
the behaiour of models,to allow FSPto be synthesised
from graphicalMessagesequence&hartsrepresentingce-
narios[21] sothatpropertieof thesescenarioganbeanal-
ysed,andto provide afacility for interactingwith behaviour
modelsby meansof clicking items on web pagessened
overtheinternetto awebbrowser[20]. Thevariousexten-
sionshave beenimplementedaspluginsusingMagicBeans.
More extensiondor LTSA arecurrentlyin developmentaind
theuseof thepluginframework hasmadeit very easyto in-
tegratenew functionality with thetool.

Theaim of usingthe plugin architecturevasthatrather
thanhaving onemonolithictool which combinedall of the
above functionality, the different extensionscould be en-
capsulatedn separatenodules,andonly the modulesthat
the userrequiredwould be loaded. This selectionof fea-
turesshouldbeableto bedonein adynamicway, sothatno
changedo the sourcecodeneedto be madein orderto add
or remove features.

By providing a standardnterfacefor LTSA plugins,the
coreof theapplicationcanuseary extensionghatthe user
requires(currently plugin componentsre placedin a spe-
cific directory and discoveredwhen the applicationstarts
up, but the mechanisntould easilybe alteredto allow plu-
ginsto be addedat ary time during execution). The appli-
cationinterrogategachpluginin turnto find outwhetherit
providescertaintypesof GUI featuregmenustool barbut-
tonsetc)thatshouldbeaddedo mainapplications userin-
terface.Thepluginsthenrespondo theuserclicking onthe
buttonsor menusby executingcode from handlerclasses
insidetherelevantextensioncomponent.

If, asin the MagicBeansarchitecture,the holes and
pegsin thejigsav analogyarerealisedusinginterfacesand
classeghatimplementthoseinterfacesiit is only possible
for thecomponentvith theinterface(hole)to call methods
in the componentwith the implementingclass(peg), and
not the otherway around. With the LTSA extensionsthis
wasa problemasthe extensioncomponentgjenerallyneed
to accessunctionality providedin the coreapplication(for
instancethe modelchecler). This problemwas solved by
giving eachplugin an interfacethroughwhich they could
call someof the main applications methods,and making
one of the classesn the main applicationimplementthis.
In thisway two bindingsarecreatedeachtime anew plugin
is loaded allowing callsto be madebothways.

4 Related Work

4.1 Java Applets

Javaappletq1] allow modulesof codeto bedynamically
downloadedandrun inside a web browser The dynamic
linking andloadingof classeghatis possiblewith Java al-
lows extra codethat extendsthe functionality available to
theuserto beloadedatary time.

A Java programcanbe madeinto an appletby making
the main classextendj ava. appl et . Appl et andfol-
lowing afew corventions.The nameof this mainclassand
the location from wherethe codeis to be loadedare in-
cludedin theHTML of awebpage.A Javaenabledrowser
canthenloadandinstantiatethis class.

The appletconcepthas proved usefulin the relatively
constrainedervironmentof a web browset but it doesnot
provideageneralisednechanisnfor creatingextensibleap-
plications. As all appletsmustextendthe provided Applet
classijt is notpossibleo have anappletwhichhasary other
classasits parent(dueto Java’s singleinheritancemodel).

4.2 Lightweight Application Development

In [16] Mayer et al presenthe plugin conceptasa de-
signpattern(in the style of [6]) andgive anexampleimple-

mentationin Java. The architecturalescribedn the design
patternis similar to thatusedby MagicBeanslt includesa
plugin managethat loadsclassesandidentifiesthosethat
implementaninterfaceknown to the mainapplication.

Theirwork doesallow for oneapplicationto beextended
with multiple plugins,possiblywith differinginterfacesput
makesno mentionof addingpluginsto otherplugins.

The plugin mechanismis describedn termsof finding
classedo addto the system,wherewe work in terms of
components Although our componentslo containsetsof
classeqalongwith otherresourcesuchasgraphics),it is
the componentsa whole thatis addedto provide the ex-
tensionto thesystem.

4.3 PluggableComponent

PluggableComponeris a patternwhich providesanin-
frastructureor architecturefor exchangingcomponentsat
runtime[22]. Thearchitecturdeaturesaregistryto manage
the differenttypesof PluggableComponentThe registry
is usedby a configurationtool to provide a list of avail-
able componentghat administratorscan useto configure
their applications so configurationis humandriven,where
our approachallows automaticconfigurationwithout total
knowledgeof the system.

All PluggableComponentare derived from the Plug-
gableComponenbaseclass. As with applets,this is not
asflexible asthe solutionusingan interfacewhich plugins
mustimplementasary classwhich is derived from a class
otherthanPluggableComponertannotheusedasaplugin.

An interestingfeatureis the provision of a mechanism
for storing and transferringconfigured PluggableCompo-
nentsbasedn Java serialization.

44 Eclipse

The EclipsePlatform[17] is designedor building inte-
grateddevelopmentervironments. It is built on a mech-
anism for discovering, integrating and running modules
whichit callsplugins.

Any pluginis freeto definenew extensionpointsandto
provide new APIs for otherpluginsto use. Pluginscanex-
tendthefunctionality of otherpluginsaswell asextending
thekernel. This providesflexibility to createmorecomplex
configurationsHowever, thereit is not possibleto placere-
strictionson the numberof ary type of plugin addedin this
architectureAs discussegbreviously this maybeimportant
whereresourcesrelimited.

Eachplugin hasto include a manifestfile (XML) pro-
viding a detaileddescriptionof its interconnectionso other
plugins. The developerneedgo know the namesf the ex-
tensionpoints presentn otherpluginsin orderto createa
connectionwith them. With the MagicBeangechnology

the actualJava interfacesimplementedby classesn plug-
ins areinterrogatedisingreflection,andthis informationis
usedto organiseandconnecicomponents.

On start-up the EclipsePlatformRuntimediscoversthe
setof availableplugins,readstheir manifestsaandbuilds an
in-memoryplugin registry. Pluginscannotbe addedafter
start-up. This is a limitation asit is often desirableto add
functionality to a running programwithout having to stop
andrestartit.

5 Conclusions

We have presented systemof plugin componentghat
allows flexible configurationsof pluginsto be assembled
addingfunctionality to anapplicationover time, asit is re-
quiredor becomesvailable. Usingthe familiar analogyof
jigsaw puzzlepieceswe consideredifferentpossiblecon-
figurationsof plugin components.

We describedh self-assemblingystemwhich produces
aconfiguratiorbasedninformationin thecodeof thecom-
ponentsyatherthanrelying on additionalconfigurationin-
formationbeingsuppliedby the useror the developer Us-
ing the systemhaslittle overheadn termsof effort for the
developeror user

The example software presentedhere implementsa
platform for composingsystemsfrom plugin components
which managesonnectiondetweencomponentsand car
dinality constraints.

We found that there are caseswhere the systemin its
basicform is non-deterministicWe describedcamechanism
basedn preferencdunctionsmakingit possibleto provide
astratgy for dealingwith the casesvherethereareoptions
asto whereto connecitomponentsAs long asthe stratgy
is known, the behaviour is predictable. This allows usto
implementadeterministicself-assemblingystem.

In future we plan to investigatewoking with different
versionsof componentsandto extendour systemto cover
themoredifficult caseof pluginremoval andreplacement.

6 Acknowledgments

We would like to acknavledgethe SLURPgroupat Im-
perial CollegeLondon,especiallySophiaDrossopoulodor
thefishexample andMatthenv Smithfor his helpin produc-
ing the diagramghatappeaiin this paper

References

[1] Applets. Technicalreport, Sun Microsystems,Inc.,
java.sun.com/applets!995-2003.

[2] M. Barr andS. Eisenbach. Safe Upgradingwithout
RestartingIn IEEE InternationalConfeenceon Soft-
ware MaintenanceSept2003.

[3] B.Nuseibeh. Weaving togetherrequirementsand ar
chitecture. IEEE Computer 34(3):115-117 March
2001.

[4] C. Szyperski. ComponenSoftwae: Beyond Object-
Oriented Programming Addison-Wesley Pub Co,
1997.

[5] M. Dmitriev. HotSwap Client Tool. Tech-
nical report, Sun Microsystems, Inc.,
www.experimentalstufcom/Techrologies/HotSwap-
Tool/index.html, 2002-2003.

[6] E.GammaR. Helm,R. JohnsonJohnVlissides.De-
sign Patterns: Elementof ReusableObject-Oriented
Softwae. Addison-Weslegy PubCo, 1995.

[7] P S.G. Bierman,M. Hicks andG. Stoyle. Formal-
ising dynamicsoftwareupdating. In Secondnterna-
tional Workshopon UnanticipatedSoftwae Evolution
at ETAPS'03, 2003.

[8] D. Garlan,J. Kramer andA. Wolf, editors. Proc. of
the First ACM SIFGOSFTWbrkshopon Self-Healing
SystemsACM PressNovember2002.

[9] D. Green. The Reflection API. Tech-
nical report, Sun Microsystems, Inc.,
http://java.sun.com/docs/books/tutorialflect/,
1997-2001.

[10] J.MageeandJ. Kramer. Concuriency— StateModels
andJavaPrograms JohnWiley & Sons,1999.

[11] Javabeans. The Only ComponentArchitecture for
Java Technology Technicalreport, Sun Microsys-
tems,Inc., java.sun.com/productsiabeans/1997.

[12] JINI. DJ - Discovery and Join. Tech-
nical report, Sun Microsystems, Inc.,
wwws.sun.com/softare/jini/specs/jinil.2html/disaery-
spec.html1997-2001.

[13] J. KramerandJ. Magee. The evolving philosophers
problem: Dynamic changemanagementlEEE TSE
16(11):1293-1308Novemberl990.

[14] S. Liang and G. Bracha. Dynamic classloading in
the Java virtual machine. In Confeenceon Object-
oriented programming systemsjanguages, and ap-
plications(OOPSLA98), pages36-44,1998.

10

[15] Macromedia. Macromedia Shockvave
Player. Technical report, Macromedia, Inc.,
www.macromedia.com/software/shockwaveplayer/,
1995-2003.

[16] J.Mayer, I. Melzer, andF. Schweiggert.Lightweight
plug-in-basedpplicationdevelopment2002.

[17] Object Technologylnternational,Inc. Eclipse Plat-
form Technical Overview. Technicalreport, IBM,
www.eclipse.og/whitepapers/eclipseverview. pdf,
July 2001.

[18] P.Oriezy, N. Medvidovic, andR. Taylor. Architecture-
baseduntimesoftwareevolution. In ICSE’'98, 1998.

[19] M. Oriol. Luckyj: anasynchronousvolutionplatform
for component-basegpplicationsIn Secondnterna-
tional Workshopon UnanticipatedSoftwae Evolution
at ETAPS'03, 2003.

[20] R. Chatle, J. Kramer, J. Magee and S. Uchitel.
Model-basedimulationof Web Applicationsfor Us-
ability Assessment.In Bridging the GapsBetween
Softwae Engineeringand Human-Computeinterac-
tion, May 2003.

[21] S.Uchitel,R.Chatley, J.KramerandJ.Magee LTSA-
MSC: Tool Supportfor Behaviour Model Elaboration
Using Implied Scenarios. In Proc. of TACAS 2003
LNCS, April 2003.

[22] M. Volter. PluggableaComponent A Patternfor Inter-
active SystemConfiguration.In EuroPLoP’99, 1999.

[23] W3C. Scalable Vector Graphics (SVG)
1.0 Specification. Technical report, W3C,
http://wwww3.0g/TR/SVG/,2001.

[24] D. Zowghi, A. Ghose,andP. Peppas.A Framevork
for ReasoningaboutRequiremengvolution. In N. Y.
Foo and R. Goebel, editors, Proceedingsof the 4th
Pacific Rim International Confeenceon Atrtificial In-
telligence Cairns, Australia, 1996 pagesl157-168.
SpringetVerlag,1996.

