
Painless Plugins

RobertChatley SusanEisenbach Jeff Magee
Departmentof Computing
ImperialCollegeLondon

180Queen’sGate,LondonSW72AZ

E-mail:
�
rbc,sue,jnm � @doc.ic.ac.uk

Abstract

Usingpluginsasa mechanismfor evolvingapplications
is appealing, but current implementationsare limited in
scope. Pluginsare optionalcomponentswhich canbeused
to enablethedynamicconstructionof flexible andcomplex
systems,passingasmuch of theconfigurationmanagement
effort aspossibleto thesystemrather thantheuser, allow-
ing gracefulupgrading of systemsover time without stop-
ping and restarting. In this paper we explore the design
spaceof plugin architectures,presenta framework that ad-
dressesthe aforementionedissues,and demonstrate some
examplesof applicationsimplementedusingour plugin ar-
chitecture.

1 Introduction

Maintenanceis a very importantpartof thesoftwarede-
velopmentprocess. Almost all software will needto go
throughsomeform of evolution over thecourseof its life-
time to keeppacewith changesin requirementsandto fix
bugsandproblemswith thesoftwareasthey arediscovered.

Traditionally, performingupgrades,fixesor reconfigura-
tionsonasoftwaresystemhasrequiredeitherrecompilation
of thesourcecodeor at leaststoppingandrestartingthesys-
tem.High availability andsafetycritical systemshavehigh
costsandrisksassociatedwith shuttingthemdown for any
periodof time [18]. In othersituations,althoughcontinu-
ousavailability maynot be safetyor businesscritical, it is
simply inconvenientto interrupttheexecutionof a pieceof
softwarein orderto performanupgrade.

Unanticipatedsoftware evolution tries to allow for the
evolutionof systemsin responseto changesin requirements
thatwerenot known at the initial designtime. Therehave
beena numberof attemptsat solving theseproblemsat
the levelsof evolving methodsandclasses[5, 7], compo-

nents[13] andservices[19]. In this paperwe consideran
approachto softwareevolution at thearchitecturallevel, in
termsof plugincomponents.

In [18] Oreizyet al identify threetypesof architectural
changethat aredesirableat runtime: componentaddition,
componentremoval andcomponentreplacement.We be-
lieve that it is possibleto engineera generalisedandflexi-
blepluginarchitecturewhichwill allow all of thesechanges
to be madeat runtime. Herewe presenta framework that
allows systemevolution throughcomponentaddition. In
futurewe hopeto go on to provide for componentremoval
andreplacement.

The benefitsof building software out of a numberof
moduleshave long beenrecognised.Encapsulatingcertain
functionalityin modulesandexposinganinterfaceevolved
into componentorientedsoftwaredevelopment[4]. Com-
ponentscan be combinedto createsystems. An impor-
tantdifferencebetweenpluginbasedarchitecturesandother
componentbasedarchitecturesis that pluginsareoptional
ratherthan requiredcomponents.The systemshouldrun
equally well regardlessof whetheror not plugin compo-
nentshavebeenadded.Pluginsallow thepossibilityof eas-
ily addingcomponentsto a working system,addingextra
functionality as it is required. Pluginscanbe usedto ad-
dressthefollowing issues:

� theneedto extendthefunctionalityof a system,

� the decompositionof large systemsso that only the
softwarerequiredin a particularsituationis loaded,

� the upgradingof long-running applicationswithout
restarting,

� incorporatingextensionsdevelopedby third parties.

Plugins have previously beenusedto addresseachof
thesedifferentsituationsindividually, but thearchitectures
designedhavegenerallybeenquitespecificallytargetedand

1

extendingthemainapplication extendingpluginsto form a chain connectingto multiple components

Figure 1. Some possib le configurations of plugins

thereforelimited. Herewepresentageneralisedframework
thatcoulddealwith any of them.

Extendingthe functionality of a systemis something
that is often necessaryas it is not possibleto know all of
the requirementsfor the systemwhen it is initially devel-
oped[24, 3]. For instance,considerthe developmentof a
web browser. Over time new mediatypeswill be devel-
opedandpeoplewill wantto usethemontheweb. In order
to view thesenew mediatypes(for instancenew videofor-
mats,or documenttypeslikeScalableVectorGraphics[23])
extracodewill haveto beaddedto thebrowser. It is notpos-
sibleto know all of thefuturemediatypeswhenthebrowser
is initially developed,but it is undesirableto haveto release
a new versionof theentirebrowserevery time thatsupport
for a new mediatype is added.By providing a mechanism
by whichextra functionalitycanbepluggedin, thebrowser
could be incrementallyupgradedas new featuresare de-
veloped. An exampleof this is Macromedia’s plugin [15]
which allows their Shockwave Flashanimationsto be dis-
playedin popularwebbrowsers.

With largesystems,it is commonthatdifferentusersre-
quire different subsetsof the total available functionality.
If everyonehasto have all of the functionality, this may
leadto unnecessaryuseof memoryandotherhardware. If
theprogramcanbemodularisedandthemodulescombined
in configurationstailored to eachindividual user, thenre-
sourceusagecanbeminimised.Also, userswill beexposed
to aninterfacetailoredto their needs,andthesoftwareven-
dor cansell differentelementsof functionality separately.
Pluginscanallow for this.

An exampleof suchmodularisationis the EclipseInte-
gratedDevelopentEnvironment[17]. It is possibleto work
with numerousprogramminglanguagesin thisdevelopment
environment,andaddingpluginsgivessupportfor thedif-

ferent languagesrequiredby differentdevelopers. This is
achieved without all developershaving to install the tools
for all languages,only thesubsetthatthey require.

Upgrading long running applicationsis often a prob-
lem. Using traditional software models,or even compo-
nentbasedsoftware, it is not normally possibleto change
theconfigurationof asystem(especiallyin termsof adding
new functionality)without haltingexecutionandrestarting
the application. This is particularlya problemwith safety
critical systemsande-commerceandotherbusinesscritical
servers. In a moreeverydaycontext it is just inconvenient
for usersto have to stopandrestarttheir applicationsin or-
derto performupgrades.Pluginscanallow for thepossibil-
ity of addingcodemodulesto reconfigureasystemwithout
having to restart.

Extensionsto applicationsareoften developedby spe-
cialist third partycompanies.For instance,companiesspe-
cialising in computervision technologymay write exten-
sionsto majorvideoandfilm processingsoftware.Thede-
velopersof themainapplicationsareunlikely to bewilling
to releasetheirproprietarysourcecodeto third partydevel-
opers,yet they may want to allow their applicationsto be
extended.Providing a plugin extensionmechanismallows
for this, asextensionscanbe purchasedandaddedto the
systemseparately.

Pluginshave beenusedin existing systems,but gener-
ally in a fairly restrictedway. Either thereareconstraints
on what can be added,or creatingextensionsrequiresa
lot of work on behalf of the developer, writing architec-
turaldefinitionsthatdescribehow componentscanbecom-
bined[17]. Webelievethatit is possibleto engineeramore
generalisedand flexible plugin architecturenot requiring
theconnectionsbetweencomponentsto beexplicitly stated.

In theremainderof thispaperwepresentawayof think-

2

1
 1
 1

Figure 2. Chaining with cardinality con-
straints

ing aboutandmodellingflexible pluginarchitecturesbased
on a familiar analogy. We explore the designspaceusing
this analogy. We then describethe requirementsand im-
plementationof a framework for managingthe additionof
pluginsto systemsandpresentexamplesthatuseit. Finally
wediscussrelatedwork andfuturedirections.

2 An Analogy

We think of the way that componentsfit togetherin a
plugin architectureasbeingsimilar to the way that pieces
of a jigsaw puzzlefit together. As longasajigsaw piecehas
theright shapedpeg, it canconnectto anotherpiecethathas
acorrespondinghole.

The main applicationprovidesa numberof holes,into
which componentsproviding extra functionality canplug.
Plugins are optional. The holes representan interface
known to the main application, and the pegs represent
classesin the plugin componentsthat implementthis in-
terface. The interfacedefinesthe signatures of methods
in the class. If an applicationhasan interfacethat allows
othercomponentsto extendit, andaplugincontainsaclass
that implementsthis interface,a connectioncan be made
betweenthem.Thepeg will fit into thehole.Thissituation,
addingcomponentsto a centralapplication,is shown in the
first exampleFigurein 1.

Thinkingaboutpluginsin thisway, it becomesclearthat
someothermoresophisticatedconfigurationswouldbepos-
sibleif weallow plugincomponentsto haveholesaswell as
pegs, i.e. if we allow pluginsto extendotherpluginsrather
thanonly allowing themto extendthemainapplication.We
canthenhave chainsof pluginsasshown in themiddleex-
amplein Figure1. An exampleof this situationmight be
if the main applicationwerea word processor, which was
extendedby pluggingin agraphicseditor, andthisgraphics
editor wasin turn extendedby pluggingin a new drawing
tool.

It is possiblethatacomponenthasseveralholesandpegs
of differentshapes(probablythemostcommonsituationin

Video Player

Film

Subtitles

�

Mixer

�

Figure 3. Non-determinism

traditionaljigsaw puzzles).This canleadto morecompli-
catedconfigurationsof components,suchas thoseshown
in therightmostexamplein Figure1. Sucha configuration
might be useful in a situationwherethe main application
was,say, an integrateddevelopmentenvironment,the first
pluginwasahelpbrowser, andthesecondadebuggingtool.
Thedebuggingtool plugsinto thethemainapplication,but
alsointo thehelpbrowsersothatit cancontributehelprele-
vantto debugging.In thisway thehelpbrowsercandisplay
helpprovidedby all of the differenttools in the IDE, with
thehelpbeingstoredlocally in eachof theseparatetools. It
is clearthatwe cannotrepresentall possibleconfigurations
of pluginsusingthesesimpleplanarjigsaw representations,
but they providea usefulmetaphorfor thinking aboutwhat
mightbepossible.

If we think onceagainaboutthefirst case,thenit seems
thatwe shouldbeableto keepon addingpluginsto theap-
plicationaslong asthey implementthe right interface,but
theremight be caseswherewe want to put limits on the
numberof pluginsthat canbe attached.This might be the
casewheneachplugin that is addedconsumesa resource
heldby themainapplication,of which a limited quantityis
available. Cardinalityconstraintscanalsobe employed to
constraintheshapesthattheconfigurationcantake.

To seethe effect of usingcardinalities,considera main
applicationwhich acceptsa certaintypeof plugin, without
a restrictionon how many pluginscanbe added. If three
compatiblepluginsareadded,all threewill be loadedand
connectedto the system. If, however, we changethe car-
dinality of the interfaceto be ��� , i.e. any numberup to a
maximumof two, aftertwo pluginshavebeenadded,athird
cannotbe. It mightbepossibleto removeplugin1 or 2, and
to replaceit with plugin 3, but it is not possibleto plug in
all threeat thesametime. In practicethoughit seemsthat
thetwo cardinalitiesusedmostoftenwill probablybe �	�
and“any number”.

3

Revisiting thechainingpatternsthatwe saw earlier(see
the secondexamplein Figure1), but employing cardinal-
ities, we canchaintogethera numberof differentcompo-
nentsof thesametype,by having eachprovide andaccept
onepeg of thesameshape(limiting thenumberof pegsac-
ceptedrequiresacardinalityconstraint- seeFigure2). This
is almostlike a Decoratorpattern[6] for components.A
decoratorconformsto theinterfaceof thecomponentit dec-
oratessothat it addsfunctionalitybut its presenceis trans-
parentto thecomponent’sclients.Suchasituationmightbe
usefulif, for instance,wewantedto chaintogethervideofil-
ters,eachof which tookavideostreamasaninputandpro-
videdanotherstreamasanoutput.Eachfilter couldperform
a differenttransformation(for exampleconverting the im-
ageto blackandwhite, or invertingit) but thecomponents
could be combinedin any order, regardlessof the number
in the chain. Pluginswould allow this configurationto be
changeddynamicallyover time.

It is our aim to provide the describedplugin architec-
turesin self-assemblingsystems[8]. It shouldbe possible
to introducenew componentsovertime. Foreachadditional
componentthesystemshouldmakeconnectionsto join it to
theexistingsystemin accordancewith its acceptedandpro-
vided interfaces.It shouldnot benecessaryfor theuseror
developerto provideextra informationabouthow or where
thecomponentshouldbeconnected,asthey maynot have
total information about the currentconfiguration,or they
may just want to delegateresponsibilityfor managingthe
configurationto the systemitself. The plugin framework
shouldbeableto assemblethecomponentsaccordingto the
typesof theclassesthey contain.

Figure3 showsapossibleconfigurationof avideoreplay
application. The main applicationdisplaysvideo streams
which aresuppliedby plugin components.Themixercom-
ponentmixestwo video streamsinto one,so canbe used
to addsubtitlesto a film. In the figure a mixer anda set
of subtitleshave beenaddedto the application,anda film
sourceis aboutto beadded.Thefilm sourcecouldconnect
eitherto themixeror directly to thevideoplayer. In thefirst
case,thesubtitleswill beappliedto thefilm, in thesecond
casethefilm andthesubtitleswill bedisplayedseparately.
We would like to be ableto ensurethat the behaviour de-
siredby theproviderof thefilm componentis implemented
or at very leastto predictwhatwill happenin this case.We
needto know that the samething will happenif the same
componentsarecombinedon differentoccasions.

It is desirablethat thebehaviour of self-assemblingsys-
temscanbemadeto bedeterministic:it shouldbepossible
to determinewhatconnectionswill bemadewhenacertain
componentis addedto a certainconfiguration. To ensure
thatthis is thecase,provisionneedsto bemadefor defining
astrategy to decidebetweendifferentpossiblebindingsin a
predictableway. Thetechniquewe usefor this is described

in moredetail in thefollowing sections.

3 Software

We have implementeda generalisedinfrastructurefor
our plugin architecture.In this sectionwe describethe re-
quirementsanddetailsof the implementation,andpresent
an exampleapplicationwhich demonstratesthe detailsof
working with theextensionmechanism.We havealsoused
this technologyto implementanextensiblearchitecturefor
a largepieceof analysissoftware,anddescribethat in the
following subsection.

Wecall ourplugininfrastructureMagicBeans.Thename
comesfrom the fact that what endedup being developed
wasquite similar in conceptto Sun’s JavaBeans[11], but
they requirethat the developerprovidesinformationabout
thebeanin a manifestfile.

3.1 Requirements

To enabletheevolution of softwaresystemsthroughthe
additionandcoordinationof plugincomponentsat runtime,
werequiresomekind of runtimeframework to bebuilt. Ex-
amining the differentcaseswe consideredin termsof the
model in the previous section,we have a numberof func-
tional requirementsfor thesystem.

Theframework shouldform a platformon top of which
anapplicationcanrun. Theplatformshouldlaunchtheap-
plication,andfromthenonmanagetheconfigurationof plu-
gin components.

Wewantpluginsto work asautomaticallyaspossible,so
that the right interfacesandclassesfrom eachcomponent
aredetected,loadedandboundby the framework without
thedeveloperhaving to doany extrawork. Thematchingof
componentsshouldbetakencareof by theframework.

It should be possibleto plug componentstogetherin
chainsandother configurationsas seenin Figure 1. The
configurationshouldbemanagedentirelyby theplatform.

Using the plugin platform shouldhave minimal impact
on thedeveloperor theuser(or systemadministrator).The
developershouldnot be forcedto designtheir softwarein
a particularway, to make extensive calls to an API, or to
write complex descriptionsof theircomponentsin any form
of architecturedefinitionlanguage.Thereshouldbenopar-
ticular installationprocedurethatneedsto begonethrough
in orderto adda component,simply allowing theplatform
to becomeawareof the new component’s locationshould
beenough.

The mechanismby which new componentsare intro-
ducedto the systemshouldnot be prescribedby the plat-
form. It shouldbe possibleto easilyadaptthe framework
to allow componentsto beaddedin new ways,for instance:

4

App
 Extension

Platform

Adder
 Strategy
Strategy

Figure 4. Platf orm architecture managing a two component application

locatedby auser, or discoveredin thefilesystemor network
etc.

In orderto successfullydealwith resourcemanagement,
it shouldbe possibleto specify the maximumnumberof
pluginsof a certaintypethatmaybeconnectedto a certain
interface.Themanagingframeworkshouldensurethatsuch
cardinalityconstraintsareenforced.

In thecasethattherearemultiplepossibleplaceswherea
new componentcouldbeconnectedto thesystem,it needs
to be possibleto definea strategy for decidingwherethe
new componentshouldbe bound. Without this, we may
have an unpredictablesystemwherecombiningthe same
componentsin the sameorderwill producedifferentcon-
figurations,whichmaywell behavedifferently, on different
occasions.

An exampleof usingastrategy to dealwith suchasitua-
tion is givenin a latersection.

3.2 Implementing Plugin Addition

MagicBeansis implementedin Java,andallowsasystem
to becomposedfrom a setof components,eachof which is
comprisedof asetof Javaclassesandotherresources(such
asgraphicsfiles)storedin a Jararchive.

Theplatformmaintainslists of all of thecomponentsin
thesystemandthebindingsbetweenthem.Wemakeexten-
sive useof Java’s reflection[9] mechanismandthe ability
to definecustomclassloaders[14].

Whena new plugin is addedto thesystem,theplatform
searchesthroughthe classesand interfacespresentin the
new component’s Jarfile to determinehow it canbe con-
nectedto thecomponentscurrentlyin thesystem.

For eachcomponent,thepluginmanageriteratesthrough
all of theclassescontainedinsidetheJarfile, checkingeach

for compatabilitywith eachof the interfacesin eachof the
other componentscurrently in the system. For a classto
becompatiblewith aninterface,it mustbea subtypeof the
interfaceandit mustnot beabstract.This matchingis per-
formedusingJava’sreflection,customloadinganddynamic
linking features,whichallow classesto beinspectedat run-
time. If a matchis found, a binding betweena classand
interface(andtheir associatedcomponents)is addedto the
system.Theclassin questionis instantiated.

Any object can register with the platform as an ob-
server [6], so that it canbe notified whenever a new bind-
ing is madeto thecomponentto which thatobjectbelongs
(i.e. thecomponentcontainingtheclassfrom whichthatob-
ject wascreated).Theplatformcallsa methodin eachob-
serverfrom thecomponentthatcontainstheinterface(hole)
thatwasmatched,passinga referenceto thenewly instanti-
atedobject(peg). A list of instantiatedpegsis maintainedto
ensurethatin thecasewhereacertainclassimplementssev-
eraldifferentinterfaces,thatclassis instantiatedonly once,
ratherthanonceperinterface.Thecoderequiredto register
anobjectasanobserver is minimal. All that is requiredis
thefollowing:

class A implements Notifiable {

...
PluginManager.getInstance().addObserver(this);
...

void pluginAdded(Object o) {

//do something with the new plugin
}

}

The Notifiable interface just declares the plugi-

5

nAdded() methodwhich the platform calls to notify the
observer thatanew pluginhasbeenconnectedandpassthe
objectreference.

In our implementationtheclassComponentis asubclass
of ClassLoader. A Componentis associatedwith a particu-
lar Jar archive and thenusedfor instantiatingany classes
within that Jar file as necessary. Using this technique
givesus the benefit that for any object in the application
wecanjustcall itsgetClass().getClassloader()
methodto identify which Componentit is associatedwith,
without having to keep our own records(keeping such
recordswould bedifficult anyway asunlike C++, Java has
no operatoroverloading,andso addingcodeto run every
timenew is usedwould bedifficult).

Weallow cardinalityconstraintsto bedefinedfor certain
interfaces,by allowing the developerto include a special
constant,cardinality in any of the Java interfacesin
their components.For instance:

public static final int cardinality = 6;

The plugin managerchecksfor the presenceof sucha
constantwhenit examinesthe interfacespresentin a com-
ponent.It thenkeepsa countof how many componentsare
boundto eachinterfacein the systemandensuresthat the
cardinalityconstraintsarenotbroken.If thedeveloperdoes
not specifya constraint,any numberof componentsof the
correcttypemaybeboundto aninterface.

There are various mechanismsthrough which plugins
couldbeintroducedto thesystem,andwhich is chosende-
pendson the developerand the application. Possibilities
includethat the userinitiatesthe loadingof pluginsby se-
lecting themfrom a menu,or locatingthemin the filesys-
tem,thattheapplicationmonitorsa certainfilesystemloca-
tion for new plugins,or that thereis somesort of network
discoverymechanismthattriggersevents,in themannerof
Sun’s Jini [12]. MagicBeansdoesnot prescribethe useof
any of these.It usesa known filesystemlocationasa boot-
strap,but componentswhich discover new pluginscanbe
addedto the platform in the form of plugin components
themselves(theplatformmanagesits own configurationas
well asthatof the targetapplication)which implementthe
Adder interface. Figure 4 shows an exampleof the plat-
form running,managingan applicationextendedwith one
plugin, with oneAdderandoneStrategy pluggedin to the
platformitself. EachAdder is run in its own thread,sodif-
ferenttypescanoperateconcurrently. Whenever anAdder
becomesawareof anew plugin, it informstheplatformand
theplatformcarriesout thebindingprocess.We have writ-
tenexampleapplicationsthatusethefirst two mechanisms
proposedin thelist abovefor locatingnew plugins.

3.3 An Example

The Virtual Fish Tank is an exampleapplicationwhich
demonstratesthe useof pluginsusingthe MagicBeansin-
frastructure.Thebasicapplicationdisplaysanuninhabited
fish tank on the user’s screen.Over time different inhabi-
tantscanbe addedto the tank. Theseinhabitantsaresup-
plied in theform of plugincomponents.

Initially the systemstartsoff with only the Tank com-
ponent. In orderto be addedto the tank,a prospective in-
habitantmust have a classthat implementsthe following
interface(in termsof the jigsaw analogy, Tank hasa hole
with a shapedefinedby this interface):

interface Inhabitant {

final static int cardinality = 6;

move();
draw();

}

All Inhabitantscan thereforebe asked to move them-
selves,andbeaskedto draw themselveson thescreen.The
constantcardinality is definedto instructtheplatform
that themaximumnumberof classesimplementingthis in-
terface that can be bound simultaneouslyto the compo-
nent containingit is 6 (to prevent the tank becomingtoo
crowded). The platform keepsa counterwhich is decre-
mentedeverytimeanotherclassimplementingtheinterface
is boundto the interface. If the counterreacheszero, no
morebindingscanbemadeto this interface.

It is possibleto adda Weedto the tank. A Weedcom-
ponentcomprisesonly oneclass(but it is still enclosedin a
Jarfile), whichknowshow to draw aweed,andwhenasked
to move will do nothing. This classprovidesthe peg that
allows theWeedcomponentto connectto theTank.

A Goldfishontheotherhandis acomponentcomprising
two classes:

class Fish {
draw() { ... }

}

class GoldFish extends Fish
implements Inhabitant {

getColor() { ... }
move() { ... }

}

This componentis implementedaccordingto the tem-
platemethodpattern[6]. Behaviour commonto all typesof
fish is definedin the superclass,with the subclassprovid-
ing thedetailspecificto Goldfishaboutits colourandhow
it moves. The GoldFishclassprovidesthe peg to fit in an
Inhabitanthole.

6

Tank

Hungry

Fish

Goldfish

Weed

Figure 5. Adding a Predator to the fish tank

ThePlatinumfishis implementedin thesameway(it has
adifferentcolour, andmovesabit fasterthantheGoldfish).
In fact,theFishclassin bothcomponentsis identical,how-
ever it is still necessaryto include it in both components.
It is not known which of thetwo will beaddedfirst (if they
areaddedatall) andsoeachcomponentmustindependently
provideall of theresourcesit needsin orderto function.

To allow a more complex configuration to be con-
structed,Inhabitantscanbeextendedto includeaninterface
thatacceptsa Predator. PredatorscaneatotherInhabitants.

interface Predator {

void eat(Inhabitant food);
}

Figure5 shows a situationin which a Hungryfish,which is
both an Inhabitantanda Predatoris aboutto be addedto
theTank. TheHungryfishwill beboundto theTankby its
Inhabitantinterface.It will alsobeboundto oneof theother
Inhabitants,which it seesasfood,by its Predatorinterface.
In the situationshown, which Inhabitantthe Predatorwill
beboundto is notclear, therearetwo possibilities.In order
to have a deterministicsystem,somesortof strategy needs
to be definedthat governsthe linking behaviour. In this
casea suitablestrategy might be that Weedsshould take
precedenceoverFish(wewanthungryfish to eattheweeds
in preferenceto eatingotherfish).

This strategy canbeimplementedby providing a prefer-
encefunctionthattheplatformcanuseto comparetwo can-
didatebindings.Strategiesallow theplatformto performa
pairwisecomparisonbetweenbinding targetsto determine
to which existing componentpluginsshouldbebound.As
long the available strategies provide preferencefunctions

Figure 6. The Vir tual Fish Tank application

for all situationswherethereis a possiblechoiceof bind-
ing targets, the systemis deterministic. As the very na-
ture of plugins meansthat the types of componentsthat
needto be decidedbetweenarenot necessarilyknown to
the developerof the platform, we have madestrategiesbe
pluginsthemselves. They canbe addedto the platform as
new typesof pluginareintroducedto thesystem.(It should
only bepossibleto bindstrategy pluginsdirectlyto theplat-
form, as they are designedto solve the problemsof non-
determinism,andcannotdo this if they themselvesaresub-
ject to suchproblems- seeFigure4). Strategiesimplement
thefollowing interface:

interface Strategy {

Binding prefer(Binding this ,
Binding that);

}

The different typesof Inhabitantcan be addedin any
combinationupto six in all, sincethatis thecardinalitycon-
straintof theInhabitantinterface.Figure6 showsa screen-
shotfrom theapplicationrunningwith oneWeed,onePlat-
inumfishandtwo Goldfishhaving beenadded.If a compo-
nent is loadedmultiple times,Java’s default classloading
behaviour meansthat the classeswill be identified as al-
readyhaving beenloaded,andthecachedcopiesusedrather
thanreloading.

It is possiblethat undercertaincircumstancesthis be-
haviour might be undesirable.If, for example,two differ-
entpeoplecreatedcomponentsfor thefishtank,implement-
ing themusingdifferentversionsof a popularlibrary class
(which they packageinto their component)thenit may be
thecasethata userwantsto loadbothof theseat thesame
time, sideby side,sothateachcomponentusesthecorrect
versionof the library. An alternative loading mechanism
couldbewritten that loadsseparatecopiesof theclassside

7

by side. This cutsdown on re-usewhereidenticalcodeis
providedby two differentplugins,but doesavoid problems
causedby conflictingversions.

In general,the situationthat we would like to achieve
is onein which separatecopiesof librariescanbe loaded
if they arenot compatible,but that librariesshouldbe up-
gradedandsharedin a suitableway if they arecompatible,
in orderto hold theminimumpossiblenumberof copiesof
eachlibrary in memoryat any time.

It is possiblethat later plugins provide a later version
of a classthatanearlierplugin alreadyprovides. To avoid
duplicationin memory, it is desirableto upgradetheexist-
ing classto the new versionif the two arecompatible. A
mechanismfor upgradingalreadyloadedclasseswould be
requiredto do this. In [2] a methodis suggestedbasedon
JMX, but this is not particularlyconvenient,asall objects
mustbeinstantiatedin a particularway in orderto take ad-
vantageof it. We have prototypeda solutionbasedon the
Java HotSwap technologydescribedin [5]. In futurework
we hopeto incorporatesucha mechanisminto the plugin
platform.

3.4 Extensible LTSA

TheLabelledTransitionSystemAnalyser(LTSA) [10] is
a Java applicationwhich allows systemsto bemodelledas
labelledtransitionsystems.Thesemodelscanbe checked
for variousproperties,makingsurethateithernothingbad
happens(safety)or thateventuallysomethinggoodhappens
(liveness).Thecorefunctionalityof LTSA is to taketextual
input in the form of the FSPprocesscalculus,to compile
this into statemodelswhich canbe displayedgraphically
andanimated,andto checkpropertiesof thesemodels.

Ontopof thiscorefunctionality, variousextensionshave
beenbuilt, notablyto allow moreillustrative animationsof
the behaviour of models,to allow FSPto be synthesised
from graphicalMessageSequenceChartsrepresentingsce-
narios[21] sothatpropertiesof thesescenarioscanbeanal-
ysed,andto provideafacility for interactingwith behaviour
modelsby meansof clicking items on web pagesserved
over theinternetto a webbrowser[20]. Thevariousexten-
sionshavebeenimplementedaspluginsusingMagicBeans.
Moreextensionsfor LTSA arecurrentlyin developmentand
theuseof theplugin framework hasmadeit veryeasyto in-
tegratenew functionalitywith thetool.

Theaim of usingtheplugin architecturewasthat rather
thanhaving onemonolithic tool which combinedall of the
above functionality, the different extensionscould be en-
capsulatedin separatemodules,andonly the modulesthat
the userrequiredwould be loaded. This selectionof fea-
turesshouldbeableto bedonein adynamicway, sothatno
changesto thesourcecodeneedto bemadein orderto add
or removefeatures.

By providing a standardinterfacefor LTSA plugins,the
coreof theapplicationcanuseany extensionsthat theuser
requires(currentlyplugin componentsareplacedin a spe-
cific directory and discoveredwhen the applicationstarts
up,but themechanismcouldeasilybealteredto allow plu-
gins to beaddedat any time duringexecution).Theappli-
cationinterrogateseachplugin in turn to find outwhetherit
providescertaintypesof GUI features(menus,tool barbut-
tonsetc)thatshouldbeaddedto mainapplication’suserin-
terface.Thepluginsthenrespondto theuserclicking onthe
buttonsor menusby executingcodefrom handlerclasses
insidetherelevantextensioncomponent.

If, as in the MagicBeansarchitecture,the holes and
pegsin thejigsaw analogyarerealisedusinginterfacesand
classesthat implementthoseinterfaces,it is only possible
for thecomponentwith theinterface(hole) to call methods
in the componentwith the implementingclass(peg), and
not the otherway around. With the LTSA extensionsthis
wasa problemastheextensioncomponentsgenerallyneed
to accessfunctionalityprovidedin thecoreapplication(for
instancethe modelchecker). This problemwassolved by
giving eachplugin an interfacethroughwhich they could
call someof the main application’s methods,andmaking
oneof the classesin the main applicationimplementthis.
In thisway two bindingsarecreatedeachtimeanew plugin
is loaded,allowing callsto bemadebothways.

4 Related Work

4.1 Java Applets

Javaapplets[1] allow modulesof codeto bedynamically
downloadedand run inside a web browser. The dynamic
linking andloadingof classesthat is possiblewith Java al-
lows extra codethat extendsthe functionality available to
theuserto beloadedatany time.

A Java programcanbe madeinto an appletby making
the main classextendjava.applet.Applet and fol-
lowing a few conventions.Thenameof this mainclassand
the location from where the code is to be loadedare in-
cludedin theHTML of awebpage.A Javaenabledbrowser
canthenloadandinstantiatethis class.

The appletconcepthasproved useful in the relatively
constrainedenvironmentof a web browser, but it doesnot
provideageneralisedmechanismfor creatingextensibleap-
plications. As all appletsmustextendtheprovidedApplet
class,it is notpossibleto haveanappletwhichhasany other
classasits parent(dueto Java’ssingleinheritancemodel).

4.2 Lightweight Application Development

In [16] Mayeret al presentthe plugin conceptasa de-
signpattern(in thestyleof [6]) andgiveanexampleimple-

8

mentationin Java. Thearchitecturedescribedin thedesign
patternis similar to thatusedby MagicBeans.It includesa
plugin managerthat loadsclassesandidentifiesthosethat
implementaninterfaceknown to themainapplication.

Theirwork doesallow for oneapplicationto beextended
with multipleplugins,possiblywith differinginterfaces,but
makesnomentionof addingpluginsto otherplugins.

The plugin mechanismis describedin termsof finding
classesto add to the system,wherewe work in termsof
components.Although our componentsdo containsetsof
classes(alongwith otherresourcessuchasgraphics),it is
the componentasa whole that is addedto provide the ex-
tensionto thesystem.

4.3 PluggableComponent

PluggableComponentis a patternwhich providesan in-
frastructureor architecturefor exchangingcomponentsat
runtime[22]. Thearchitecturefeaturesaregistryto manage
the different typesof PluggableComponent.The registry
is usedby a configurationtool to provide a list of avail-
able componentsthat administratorscan useto configure
their applications,soconfigurationis humandriven,where
our approachallows automaticconfigurationwithout total
knowledgeof thesystem.

All PluggableComponentsare derived from the Plug-
gableComponentbaseclass. As with applets,this is not
asflexible asthesolutionusingan interfacewhich plugins
mustimplementasany classwhich is derivedfrom a class
otherthanPluggableComponentcannotbeusedasaplugin.

An interestingfeatureis the provision of a mechanism
for storing and transferringconfiguredPluggableCompo-
nentsbasedon Java serialization.

4.4 Eclipse

TheEclipsePlatform[17] is designedfor building inte-
grateddevelopmentenvironments. It is built on a mech-
anism for discovering, integrating and running modules
which it callsplugins.

Any plugin is freeto definenew extensionpointsandto
provide new APIs for otherpluginsto use.Pluginscanex-
tendthefunctionalityof otherpluginsaswell asextending
thekernel.Thisprovidesflexibility to createmorecomplex
configurations.However, thereit is notpossibleto placere-
strictionson thenumberof any typeof pluginaddedin this
architecture.As discussedpreviouslythismaybeimportant
whereresourcesarelimited.

Eachplugin hasto includea manifestfile (XML) pro-
viding adetaileddescriptionof its interconnectionsto other
plugins.Thedeveloperneedsto know thenamesof theex-
tensionpointspresentin otherpluginsin orderto createa
connectionwith them. With the MagicBeanstechnology,

the actualJava interfacesimplementedby classesin plug-
ins areinterrogatedusingreflection,andthis informationis
usedto organiseandconnectcomponents.

On start-up,theEclipsePlatformRuntimediscoversthe
setof availableplugins,readstheir manifestsandbuilds an
in-memoryplugin registry. Pluginscannotbe addedafter
start-up. This is a limitation asit is often desirableto add
functionality to a runningprogramwithout having to stop
andrestartit.

5 Conclusions

We have presenteda systemof plugin componentsthat
allows flexible configurationsof plugins to be assembled
addingfunctionality to anapplicationover time, asit is re-
quiredor becomesavailable.Usingthefamiliar analogyof
jigsaw puzzlepieces,we considereddifferentpossiblecon-
figurationsof plugincomponents.

We describeda self-assemblingsystem,which produces
aconfigurationbasedoninformationin thecodeof thecom-
ponents,ratherthanrelying on additionalconfigurationin-
formationbeingsuppliedby theuseror thedeveloper. Us-
ing thesystemhaslittle overheadin termsof effort for the
developeror user.

The example software presentedhere implementsa
platform for composingsystemsfrom plugin components
which managesconnectionsbetweencomponentsandcar-
dinality constraints.

We found that thereare caseswherethe systemin its
basicform is non-deterministic.Wedescribedamechanism
basedonpreferencefunctionsmakingit possibleto provide
astrategy for dealingwith thecaseswherethereareoptions
asto whereto connectcomponents.As longasthestrategy
is known, the behaviour is predictable. This allows us to
implementadeterministicself-assemblingsystem.

In future we plan to investigatewoking with different
versionsof components,andto extendour systemto cover
themoredifficult casesof plugin removal andreplacement.

6 Acknowledgments

We would like to acknowledgetheSLURPgroupat Im-
perialCollegeLondon,especiallySophiaDrossopouloufor
thefishexample,andMatthew Smithfor hishelpin produc-
ing thediagramsthatappearin thispaper.

References

[1] Applets. Technicalreport, Sun Microsystems,Inc.,
java.sun.com/applets/,1995-2003.

9

[2] M. Barr andS. Eisenbach. SafeUpgradingwithout
Restarting.In IEEEInternationalConferenceonSoft-
ware Maintenance, Sept2003.

[3] B.Nuseibeh. Weaving togetherrequirementsandar-
chitecture. IEEE Computer, 34(3):115–117,March
2001.

[4] C. Szyperski. ComponentSoftware: BeyondObject-
Oriented Programming. Addison-Wesley Pub Co,
1997.

[5] M. Dmitriev. HotSwap Client Tool. Tech-
nical report, Sun Microsystems, Inc.,
www.experimentalstuff.com/Technologies/HotSwap-
Tool/index.html,2002-2003.

[6] E. Gamma,R. Helm,R. Johnson,JohnVlissides.De-
signPatterns: Elementsof ReusableObject-Oriented
Software. Addison-Wesley PubCo,1995.

[7] P. S. G. Bierman,M. Hicks andG. Stoyle. Formal-
ising dynamicsoftwareupdating. In SecondInterna-
tional WorkshoponUnanticipatedSoftwareEvolution
at ETAPS’03, 2003.

[8] D. Garlan,J. Kramer, andA. Wolf, editors. Proc. of
the First ACM SIFGOSFTWorkshopon Self-Healing
Systems. ACM Press,November2002.

[9] D. Green. The Reflection API. Tech-
nical report, Sun Microsystems, Inc.,
http://java.sun.com/docs/books/tutorial/reflect/,
1997-2001.

[10] J.MageeandJ.Kramer.Concurrency– StateModels
andJavaPrograms. JohnWiley � Sons,1999.

[11] Javabeans. The Only ComponentArchitecture for
Java Technology. Technical report, Sun Microsys-
tems,Inc., java.sun.com/products/javabeans/,1997.

[12] JINI. DJ - Discovery and Join. Tech-
nical report, Sun Microsystems, Inc.,
wwws.sun.com/software/jini/specs/jini1.2html/discovery-
spec.html,1997-2001.

[13] J. KramerandJ. Magee. The evolving philosophers
problem: Dynamicchangemanagement.IEEE TSE,
16(11):1293–1306, November1990.

[14] S. Liang and G. Bracha. Dynamic classloading in
the Java virtual machine. In Conferenceon Object-
orientedprogramming, systems,languages, and ap-
plications(OOPSLA’98), pages36–44,1998.

[15] Macromedia. Macromedia Shockwave
Player. Technical report, Macromedia, Inc.,
www.macromedia.com/software/shockwaveplayer/,
1995-2003.

[16] J.Mayer, I. Melzer, andF. Schweiggert.Lightweight
plug-in-basedapplicationdevelopment,2002.

[17] Object TechnologyInternational,Inc. EclipsePlat-
form TechnicalOverview. Technical report, IBM,
www.eclipse.org/whitepapers/eclipse-overview.pdf,
July2001.

[18] P. Oriezy, N. Medvidovic, andR.Taylor. Architecture-
basedruntimesoftwareevolution. In ICSE’98, 1998.

[19] M. Oriol. Luckyj: anasynchronousevolutionplatform
for component-basedapplications.In SecondInterna-
tional WorkshoponUnanticipatedSoftwareEvolution
at ETAPS’03, 2003.

[20] R. Chatley, J. Kramer, J. Magee and S. Uchitel.
Model-basedSimulationof WebApplicationsfor Us-
ability Assessment. In Bridging the GapsBetween
Software EngineeringandHuman-ComputerInterac-
tion, May 2003.

[21] S.Uchitel,R.Chatley, J.KramerandJ.Magee.LTSA-
MSC: Tool Supportfor Behaviour Model Elaboration
Using Implied Scenarios. In Proc. of TACAS2003.
LNCS,April 2003.

[22] M. Völter. PluggableComponent- A Patternfor Inter-
activeSystemConfiguration.In EuroPLoP’99, 1999.

[23] W3C. Scalable Vector Graphics (SVG)
1.0 Specification. Technical report, W3C,
http://www.w3.org/TR/SVG/,2001.

[24] D. Zowghi, A. Ghose,andP. Peppas.A Framework
for ReasoningaboutRequirementEvolution. In N. Y.
Foo and R. Goebel,editors, Proceedingsof the 4th
Pacific RimInternationalConferenceon Artificial In-
telligence, Cairns, Australia, 1996, pages157–168.
SpringerVerlag,1996.

10

