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Abstract 
 

Scenarios and goals are effective and popular 
techniques for requirements definition. Validation is 
essential in order to ensure that they represent what 
stakeholders actually want. Rather than validating 
scenarios and goals separately, possibly driving the 
elaboration of one through the validation of the other, 
this paper focuses on exploiting the relation between 
goals and scenarios. The aim is to provide effective 
graphical animations as a means of validating both. 
Goals are objectives that a system is to meet. They are 
elaborated into a structure that decomposes 
declarative goals into goals that can be formulated in 
terms of events that can be controlled or monitored by 
the system. Scenarios are operational examples of 
system usage. The relation between scenarios and 
goals is established by means of fluents that describe 
how events of the operational description change the 
state of the basic propositions from which goals are 
expressed. Graphical animations are specified in terms 
of fluents and driven by a behaviour model synthesised 
from the operational scenarios. 
 
1. Introduction 
 

Scenario-based notations such as Message 
Sequence Charts (MSCs) [9] describe how 
components, the environment and users interact in 
order to provide system level functionality. Their 
simplicity and intuitive graphical representation 
facilitate stakeholder involvement and make them 
popular for documenting intended system behaviour. 
However, scenarios are operational descriptions that 
leave the required properties of the intended system 
implicit. Scenarios provide a common ground on 
which goals can be elicited, discussed, and elaborated, 
but are not requirements in their own right.  

Goals [11] focus on the objectives of the systems to 
be constructed. They are declarative statements and as 
such complement the operational nature of scenarios. 
Goals are refined into sub-goals that can be 
operationalised and assigned to specific components. 
Hence, goals can serve as a framework for eliciting 
and elaborating operational descriptions of the required 
system. 
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Figure 1 : Interweaving goal-based and scenario-

based RE. (Dashed elements taken from [12]). 

There has been extensive research on the 
relationship between scenarios and goals, focusing 
mainly on how one can aid the elaboration of the other. 
Dotted elements in Figure 1 depict how goal-based and 
scenario-based RE can be integrated according to van 
Lamsveerde [12]. All arrows depict data dependencies.  

Scenarios may prompt the elicitation of underlying 
goals or be used for goal inference (Figure 1, right-to-
left arrow). They can provide examples of how goals 
can be realised or be witnesses of violations of these 
goals (Figure 1, left-to-right arrow). Goals may drive 
the elaboration of new scenarios (Figure 1, left-to-right 
arrow). However, less attention has been given to how 
scenarios and goals can be used together to facilitate 
requirements elicitation, elaboration and validation. In 
this paper we focus on validation. 

Validation is a key requirements activity. 
Requirements engineers must not only elicit and 
document scenarios and goals, but also validate that 



these are indeed what stakeholders want [19]. 
Animation is an effective validation technique, and we 
show that combining goals with scenarios can result in 
effective animations that not only support scenario and 
goal validation, but can also prompt their elaboration.  

In its simplest form, animation means allowing 
stakeholders to step through sequences of events 
dictated by some behaviour model. More sophisticated 
animations allow stakeholders to visualise some aspect 
of the system state as they step through the alternative 
events. However, this is not straightforward to 
implement if behaviour has been described in the form 
of scenarios, where the notion of state is implicit. 
Which system states should be inferred from what are 
essentially sequences of events? One possibility could 
be to assume that each event in the scenario leads to a 
new system state. However, this is too naïve. 

To present a meaningful animation to a stakeholder, 
it is not the system state that is relevant but 
abstractions of it that relate to the concerns of the 
stakeholder participating in the animation. Goals can 
be the source for establishing a meaningful partition of 
system state, because they capture the reasons why the 
system behaves as described in the scenarios.  

We believe that animations of system behaviour 
should be driven by scenarios and displayed from the 
perspective of the stakeholder participating in the 
animation and in a way that relates to the stakeholder’s 
goals. For example, the intermediate states that the 
system may go through while performing user 
authentication could be considered irrelevant from the 
perspective of a user accessing email on a web-based 
email client. However, given a privacy goal on email 
access, partitioning the system state space into those 
where the user has been authenticated and logged on, 
from those in which authentication has failed, is very 
relevant.  

To perform such animations, a relation between 
scenarios and goals must be established. We build on 
van Lamsveerde's approach, in which goals are 
successively AND-OR refined (Figure 1, left circle 
arrow) into requisites. Requisites are "goals that can be 
formulated in terms of states controllable by some 
individual agent". Controllable state refers to states 
that are entered and exited on events that are controlled 
or monitored by the agent. However, the goals we use 
to relate to operational scenarios need not be 
requisites. We use fluent linear temporal logic (FLTL) 
formulas [3] to express goals that can be formulated in 
terms of states controllable by the software system. 
These FLTL formulas have as basic elements fluents, 
which are central to establishing the relation between 
goals and scenarios.  

Fluents are abstractions of system state specified in 
terms of the occurrence of events such as those that 
appear in operational scenarios. Miller and Shanahan 
[18] informally define (propositional) fluents as 
follows: “Fluents (time-varying properties of the 
world) are true at particular time-points if they have 
been initiated by an event occurrence at some earlier 
time-point, and not terminated by another event 
occurrence in the meantime. Similarly, a fluent is false 
at a particular time-point if it has been previously 
terminated and not initiated in the meantime.” 

Fluents are also central to specifying animations. 
The same fluents that are used to express system goals 
are used to construct visualisation rules that are used 
by an animator to build graphical views of the system. 
This results in intuitive, simple visualisation 
specifications, and also in animations that support 
validation of goals and scenarios used in conjunction. 
By having stakeholders animate system behaviour 
viewed through abstract states defined in terms of 
fluents, not only are the scenarios validated as they 
drive the animation but also confidence in the validity 
of the system goals is gained. 

The toolset that we have developed to support our 
approach uses standard web browsers and HTTP and is 
particularly well suited for the animation of web-based 
applications. 

The paper is organised as follows: Section 2 
presents background on MSCs, Labelled Transition 
Systems and model synthesis. We also introduce a 
small example to illustrate our approach. Section 3 
introduces fluents and goals and Section 4 gives an 
overview to our animation approach. Section 5 details 
how visualisations are specified using fluents. In 
Section 6 we describe how our approach can prompt 
goal and scenario elaboration. Section 7 explains the 
multi-user extensions. Section 8 gives an account of 
our experience using the approach and the paper 
concludes with a discussion and related work. 
 
2. Scenarios and Behaviour Models  
 

The notation we use for documenting scenarios is a 
syntactic subset of the message sequence chart (MSC) 
standard of the International Telecommunication 
Union [9] and of UML 2.0 sequence diagrams [21]. 
For a detailed and formal description of the language 
refer to [25]. A scenario-based specification consists of 
several basic MSCs and one high-level MSC. A basic 
MSC (bMSC) describes a finite interaction between a 
set of components (see Figure 2). Each vertical line, 
called an instance, represents a component.  Each 
horizontal arrow represents a synchronous message, its 



source on one instance corresponds to a message 
output and its target on a different instance 
corresponds to a message input. A bMSC defines a 
partial ordering of messages, which in turn defines a 
set of sequences of message labels (called traces) that 
are all the possible orderings of the partial order of 
messages. In Figure 2 only one system trace is defined: 
<enable, enterPwd, authenticate, allSubjects, 
selectMsg, sendMsg, closeMsg, allSubjects, logout>. 

 
Figure 2 : User reads email scenario.  

 
Figure 3 : hMSC for web-mail system 

A high-level MSC (hMSC) allows the composition 
of bMSCs. It is a directed graph where nodes represent 
bMSCs and edges indicate their possible continuations. 
The hMSC shows how the system can evolve from one 
bMSC to another. Figure 3 shows the hMSC for a 
simple model of a web-based email system. Once a 
user has logged in, they can view messages. 
Alternatively, they can fail to log in correctly (possibly 
repeatedly). In addition, the administrator may disable 
the user at any point. hMSCs also have an initial node 
(the init box in Figure 3). The behaviour of an MSC 
specification is given by a set of sequences of message 
labels: those determined by composing sequentially the 
bMSCs of any maximal path in the hMSC, where a 
maximal path is a path that cannot be extended further. 

Note that this corresponds to the adoption of weak 
sequential composition, which is the standard 
interpretation of hMSCs [9].  

We use Labelled Transition Systems (LTSs) [10] to 
model the behaviour of communicating components in 
a concurrent system. A LTS (Figure 4) is a state 
transition system where transitions are labelled. 
Transition labels model the messages components send 
and receive. The special label τ models an internal 
event that is unobservable by other components. A 
trace of P is a sequence of observable events that P can 
perform starting at its initial state. In addition, we use 
an operation on LTS called parallel composition 
(based on the || composition operator used in CSP [7]) 
to model the system that results from composing 
components such that they execute asynchronously but 
synchronise on all shared message labels. In other 
words, message labels are interpreted as handshaking 
communication between components. For a detailed 
explanation refer to [15].  

We use a LTS synthesis technique to automate the 
construction of behaviour models from MSCs. We 
construct one model for each component that appears 
in the MSC specification (Figure 4 shows the LTS of 
the Server component from Figure 2). The LTS 
alphabet is the set of messages the component sends 
and receives in the MSC specification.  
 

enable enterPwd

disable invalidPwd

authenticate allSubjects  logout 

disable 

selectMsg 

enterPwd

sendMsg

logout

disable 

closeMsg 

0 1 2 3 4 5 6 7

 
Figure 4 : Synthesised LTS for Server component 

Once a LTS has been synthesised for each 
component, the parallel composition of all LTSs yields 
what we call a minimal architecture model of the MSC 
specification. This means that it is the smallest model 
with respect to trace inclusion that preserves the 
component structure and interfaces of the MSC 
specification and that exhibits all the traces specified in 
the MSC specification. Note that minimality is not 
enough to guarantee that the architecture model will 
not provide unspecified behaviours: implied scenarios 
can arise due to mismatches between the component 
structure and the traces specified in the MSC 



specification. See [25] for a detailed explanation of 
architecture models, synthesis and implied scenarios. 
 
3. Goals and Fluents 
 

We use goals in the spirit of van Lamsveerde’s 
goal-oriented requirements engineering approach, 
KAOS (See [11] for an overview). Goals are 
considered to be objectives that a system should meet. 
Goals can be declarative statements that address not 
only questions on WHAT the system should do but 
also WHY it should do so. High-level goals are AND-
refined into sets of sub-goals, meaning that the 
satisfaction of sub-goals is a sufficient condition for 
the satisfaction of the higher-level goals. By AND-
refinement high-level goals can be decomposed into 
goals (called requisites) that can be formulated in 
terms of states controllable by some component. At 
this stage, Lamsveerde’s approach advocates assigning 
requisites to components and elaborating how the 
component can realise the requisite through a series of 
operations. This entails that there is a strong relation 
between component operations and the predicates on 
states from which requisites are formulated. In our 
event-based models, it is natural to formulate requisites 
from propositions that are predicates on the occurrence 
of events. We propose using “fluent” propositions to 
naturally formulate goals in terms of states controllable 
by a set of components.  

From [3], we define a fluent Fl by a pair of sets, a 
set of initiating actions IFl and a set of terminating 
actions TFl:  Fl ≡ 〈 IFl , TFl 〉  where IFl , TFl  ⊂ Act and 
IFl ∩ TFl  = ∅. In addition, a fluent Fl may initially be 
true or false at time zero as denoted by the attribute 
InitiallyFl.  The set of atomic propositions from which 
FLTL (the linear temporal logic of fluents) formulas 
are built is the set of fluents Φ. Therefore, an 
interpretation in FLTL is an infinite word over 2Φ, 
which assigns to each time instant the set of fluents 
that hold at that time instant. An infinite trace 

>< L210 aaa  over Act also defines an FLTL 
interpretation >< L210 fff  over 2Φ as follows: ∀i∈N, 
∀ Fl ∈ Φ, Fl ∈ fi   iff either of the following holds 
− ),0( FlkFl TaikNkInitially ∉≤≤⋅∈∀∧   
− )),()()((: FlkFlj TaikjNkIaijNj ∉≤<⋅∈∀∧∈∧≤∈∃

In other words, a fluent holds at a time instant if and 
only if it holds initially or some initiating action has 
occurred, and in both cases, no terminating action has 
yet occurred. Using the syntax of the LTSA [14] we 
can specify the following fluents that relate to the 
simple email system: 
fluent LoggedIn = <authenticate, {logout, disable}> 

fluent Registered = <enable, disable> 
fluent ReadingMsg = <selectMsg, closeMsg> 
The LoggedIn fluent specifies that for a user to be in 
the logged in state, that user must have previously been 
authenticated by an authenticate action and that the 
user must not have logged out or been disabled by the 
administrator. The Registered fluent specifies that a 
user is registered from the point that user is enabled by 
the administrator until disabled. The ReadingMsg 
fluent specifies the state in which a user can read a 
message. Fluents default to initially false. Given these 
fluents, we can specify firstly, the system goal that a 
logged in user must always be registered and secondly, 
that a user must always be logged in to read a message. 
In the following, [] is the temporal always operator, 
-> implication and && conjunction. 
assert LegalAccess = [](LoggedIn -> Registered) 
assert PrivateRead = [](ReadingMsg -> LoggedIn) 

These two goals can be related to a higher-level 
goal concerned with the security of the system. In 
doing goal decomposition, this higher-level goal is 
refined by the conjunction of LegalAccess and 
PrivateRead. Thus, having formalised the lower-
level goals, the higher-level goal is specified by: 
assert Security = (LegalAccess && PrivateRead) 

The fluents involved in PrivateRead include 
events from several different agents. For instance, 
logout is an event shared by user and server, while 
disable is an interaction between the administrator 
and the server. In the approach described in this paper, 
we do not require goals to be formulated in terms of 
states controllable by an individual component (i.e. 
requisites), but potentially by a set of components that 
may interact in order to realise the goal. These 
components and their interactions are described in the 
operational scenarios.  
 
4. Animation  
 

In this section we give an overview of the model we 
adopt for animation. In the next section we described 
the details of how systems states captured by fluents 
are rendered as Web pages. 

Animation is performed by three components: an 
animator, a visualiser and a participant (top of Figure 
5). In fact, there can be several participants, each of 
which interacts through a standard web browser; 
however, to simplify presentation we defer the 
explanation of multi-user animations to Section 7. Our 
conceptual animation model relies on inputs (bottom of 
Figure 5): scenarios in the form of MSCs, a goal graph 
that has been refined to goals that can be formulated in 
terms fluents, and the roles that participants are to play 
in the animation. 



Participant nBehaviour
 Model
(LTS)

Visualisation
Spec.

event

fluent valuation

requestPage(event)

sendPage

Data dependency

x
Data flowScenarios

(MSCs)
Goals
(FLTL)

Animator Visualiser Participant 1

Participants

Fluents Controlled
events

sendPage
requestPage(event)

 
Figure 5 : Conceptual Animation Model 

The animator component uses a behaviour model in 
the form of a LTS that is the result of the LTS 
synthesis (Section 2 and [25]) from the given 
scenarios. The animator uses the behaviour model to 
react to events controlled by the animation 
participants. The animator also has access to the 
definitions of the fluents used in specifying goals. It 
keeps track of the value of fluents during an animation 
and forwards these values to the visualiser, which in 
turn uses them to construct visualisations of system 
state, based on these values. Finally, the animator is 
informed as to which transitions of the model 
correspond to events that are to be controlled by the 
participant. The choice of these controlled events 
depends mainly on the role stakeholders participating 
in the animation are to have. For instance, if a 
participant is to play the role of a user of the webmail 
system described previously, the set of controlled 
events is: {enterPwd, selectMsg, closeMsg}. 

The visualiser component requires a visualisation 
specification. This specification is a mapping from 
fluents to visual elements. When the component needs 
to produce a visualisation of the system state, it will 
compose all visual elements that correspond to fluents 
that are true in that state. The visual elements also 
include active elements (such as buttons and 
hyperlinks) that are related to events that are 
controllable by the participant. These active elements 
allow participants to trigger the occurrence of the 
events they control. Animation proceeds as follows: 
START ; 
1- Animator runs model until a state is reached in which all 

outgoing actions are labelled by controlled actions. The 
values of fluents are kept up to date as actions are 
executed. Fluent values passed to Visualiser. 

2- Visualiser accepts HTTP request and returns HTML 
rendering of page using fluent values. 

LOOP: 
3- Visualiser accepts HTTP request with selected event 

parameter. Event passed to Animator. 
4- If the event does not correspond to an outgoing transition 

then ERROR, otherwise, model state advanced as in 1 
above and updated fluent values passed to Visualiser. 

5- Visualiser returns HTML rendering of page according to 
current fluent values. 

Note that animation only renders stable states, 
where a stable state is one in which all outgoing 
transitions are labelled by controlled actions. This form 
of maximal progress is widely adopted in modelling 
reactive systems and is, for example, consistent with 
Statechart semantics in which all microsteps, grouped 
into a macrostep, are executed before a transition to the 
next state occurs. 

The tool that we have developed to support our 
approach is an extension of the Labelled Transition 
Systems Analyser (LTSA) tool [14]. LTSA serves as 
the animator component of our model, while a 
specially developed plugin implements the Visualiser 
component. This plugin has a small web server within 
it, that can serve pages to the different participants’ 
standard web browsers.  

 
5. Specifying Visualisation using Fluents 
 

The visualisation specification relates the system 
state with a web page that is presented to participants 
to convey that state. The specification thus consists of 
rules that map state to visual elements. Rather than 
tying these visualisation rules to concrete system states 
(e.g. states of the LTS synthesised from scenarios), we 
map fluent expressions which characterise abstract 
states to visual elements.  

Note that fluent expressions define abstract states 
that crosscut the concrete states of the behaviour 
model. This is because the truth value of a fluent does 
not depend on the concrete state the behaviour model 
is in at a given point, rather it depends on the history of 
events that led to the concrete state. This feature 
decouples behaviour and goal modelling, providing an 
abstract mechanism for linking the two.  

Using abstract states that are relevant to the 
participant and that relate to system goals is more 
effective in supporting scenario and goal validation 
since many concrete system states in a behavioural 
model are not directly meaningful to a stakeholder in 
the context of a specific animation.  

Fluent expressions are constituted by fluent 
propositions used in system goals, expressed in FLTL. 
Examples of these were presented in section 3. We 
associate fluent expressions with visualisation 
elements by means of showwhen rules. In the context 
of the LTSA tool, these rules are encoded in XML. In 
the following, we present an abstract syntax in which 
bracketing by tags is represented by indentation. Tags 
are shown in bold. 

The visualisation rule depicted below specifies that 
the HTML in the display section is included in the 
returned web page when the fluent LoggedIn does 



not hold. The display section of a rule uses HTML 
extended with some additional constructs which are 
rewritten by the Visualiser when constructing a 
webpage. One of these additional constructs is button 
– this specifies a controlled action in the model that is 
returned as an attribute of the HTTP request when the 
button, that the construct causes to be displayed on the 
web page, is pressed. In other words, pressing the 
button on the web page allows a model transition 
labelled with the action – in this case enterPwd – to 
occur. 
showwhen 
    not LoggedIn 
display 
    <!— HTML for username, password boxes --> 
    table tr 
      td input type="text" name="userid"       
      td input type="password" name="pwd"       
      td button enterPwd 

 
Figure 6 : Visualisation of not LoggedIn 

Instead of the button we can use hyperlinks to 
control actions. For instance, the following can be used 
to display a message subject that, if clicked on, would 
trigger the action selectMsg. Images can be associated 
to the link in the same manner. 
link 
  action selectMsg</action> 
  content “Your diploma has arrived” 

Typically, a visualisation specification will have 
many showwhen rules. When the visualiser receives 
the truth-values of all fluents from the animator, it 
builds a web page by aggregating all of the HTML 
fragments in showwhen rules whose expressions 
evaluate to true. In addition, the specification may 
include an HTML header and footer to be included on 
every generated page. This helps to provide a 
consistent look and feel to the pages of the 
visualisation.  

In order to enrich the visualisation, we allow the 
possibility of displaying data previously entered or 
selected by the user. For instance, when logging in, the 
user supplies their username. On subsequent screens, 
we can use this information to add a greeting at the top 
of the page using the following rule. 
showwhen 
   loggedIn 
display 
    <!-- greet user --> 

    “Hello”  
     value name="userid"  
    “welcome to webmail.” 

 The value tag is another extension to HTML that 
is rewritten by the visualiser and replaced with the 
value that the user entered when logging in. The name 
"userid" matches the name of one of the input 
elements in the previous rule. 

We also support the addition of behavioural 
constraints based on data input by the user. For 
example, we may specify that the authenticate 
event will only be performed when the username and 
password that the user typed match particular values. 
This provides the participant with a better experience 
of the system than if they were authenticated or not 
based only on a non-deterministic choice, which is the 
behaviour specified in the scenarios for this example. 
action authenticate 
conditions 
  and 

 equal key="userid" value="demo" 
 equal key="pwd" value="demo" 

 
6. Exploiting Inconsistency in Visualisation 
Specifications 
 

The fact that user controlled events are made 
accessible to the participant by means of showwhen 
rules may lead to inconsistency. These inconsistencies 
may simply signal a trivial mistake in the visualisation 
specification; however, more importantly, they can 
also prompt the elaboration of scenarios and goals  

There are two manifestations of an inconsistent 
visualisation specification. The first is when a 
controlled event is made available to a participant at a 
certain point during the animation, but the underlying 
behaviour model does not allow that controlled event 
to occur. In these cases, if the participant triggers the 
event, the animator cannot react to it as no scenario 
describing the appropriate behaviour was given.  

This type of inconsistency occurs when there is a 
mismatch between visualisation and behaviour. It may 
be the case that the visualisation criteria are correct 
(that it is reasonable to allow the participant to trigger 
the event in the current abstract state) and that the 
scenario being animated was not considered in the 
original set of scenarios. Hence the inconsistency 
signals an incompleteness of the scenario specification. 
On the other hand, it may be the case that the abstract 
state has been incorrectly defined, and consequently 
some visual elements are being displayed 
inappropriately. Incorrect definition of the abstract 
state can be a result of incorrect fluent expressions, or 
incorrect definition of the initiating and finalising 
events for fluents. In either case, because fluents and 



fluent expressions are extracted from goals, goal 
elaboration may be required. Finally, the inconsistency 
may signal that the goals are not being satisfied by the 
operational behaviour of the system; hence revision of 
either goals or scenarios is required.  

The second manifestation of an inconsistent 
visualisation specification is when a controlled event is 
not made available to the participant at a state when 
the event is possible in the underlying behaviour 
model. This means that the participant is being denied 
the possibility of animating certain system behaviours. 
These inconsistencies may indicate the existence of 
superfluous scenarios or, as before, a problem with the 
fluents and fluent expressions defining abstract states. 
In either case, the inconsistency may prompt the 
elaboration of scenarios and goals.  

The animation tool recognises these inconsistencies 
and informs a participant of when they occur. If the 
participant clicks on a controlled event that is not 
enabled in the underlying behaviour model, the 
visualiser will return an error message to them – step 4 
of the outline animation algorithm of section 4. In 
addition, when the visualiser component builds a page 
for the participant, it checks if there are any enabled 
controlled events in the current state of the model, that 
are members of the controlled set of actions for that 
participant, and for which the page has no active 
elements. If this is so, it adds default buttons for them 
to the page.  
 
7. Multi-Participant Animations 

 
Based on our experience with scenarios and 

animations, we have recognized the benefits of 
supporting multi-participant animations. These 
animations allow stakeholders to explore how the 
behaviour of system entities affect each other. Multi-
participant animations are particularly useful in 
concurrent and distributed systems, and systems that 
can be used concurrently by multiple users. 

To support multi-participant animations, 
visualisation specification provides the notion of role. 
Hence, controllable events and visualisation rules are 
defined on a role basis, and each animation participant 
is given a role during the animation.  

In this way, multiple participants can control 
different sets of events and have completely different 
visualisations of system state. Each visualisation is 
more akin to the fluents, and hence the goals, that are 
relevant to each role.  

Multi-participant animations do, however, introduce 
some additional behaviour. The cause for this is the 
choice of a decoupled architecture of our tool: Web 

browsers used by participants can only request web 
pages from the Visualiser. Hence, the visualiser cannot 
inform participants of any change of state if the 
browser is not refreshed. This is crucial in a multi-
participant animation. If one user is visualising the 
state through their browser, and meanwhile another 
user has triggered an event and hence a change of 
state, the first user will not see the change of state. The 
consequence of this is that the first user may choose to 
trigger an event that was enabled in the original state, 
but is no longer enabled.  

The situation described above, is exactly what 
happens in web-based applications, and makes the 
architecture we have adopted particularly well suited 
for animating them. Consequently, we have extended 
our tool to cope with these situations and to provide 
appropriate feedback when they arise.  
 
8. Experience 
 

The techniques described above have been used to 
create an early prototype of an application called 
eSuite, developed by the Greek software company 
LogicDIS. The eSuite application provides a layer on 
top of an Enterprise Resource Planning system that 
enables users to interact with the system via a web 
interface. Typical uses of the system include stock 
control and the placing and monitoring of orders for 
products. LogicDIS are in the process of developing a 
new version of eSuite, and wished to validate their 
designs for the new system with their users before 
beginning the development phase. 

Working with LogicDIS developers, we created a 
scenario specification that detailed the intended 
behaviour of a particular part of the system: the order 
insertion procedure. The overall goal that the user 
hopes to achieve using this part of the system is that an 
order is placed once they receive an instruction from a 
customer (perhaps by telephone). We used the 
Milestone Refinement Pattern [2] repeatedly to 
decompose this goal and determine a number of 
intermediate states that need to be achieved in order to 
achieve the overall goal. These were: to have selected 
a company, selected a customer, completed payment 
and delivery details (the order header), and completed 
the details of the order. More formally:   
 [](instruction  -> <> orderPlaced)  

[](instruction  -> <> companySelected) /\ 
[](companySelected -> <> orderPlaced) /\ 

[](companySelected -> <> customerSelected) /\ 
[](customerSelected -> <> orderPlaced) /\ 

[](customerSelected -> <> headerCompleted) /\ 
[](headerCompleted -> <> orderPlaced) 

Figure 7 : Refinement of PlaceOrder Goal 



 
Figure 8 : User-centred design session 

 
Figure 9 : Screenshot of simulation of eSuite 

A set of fluents were derived from these subgoals 
and, based on these fluents, a set of visualisation rules. 
To try and capture the look-and-feel of the eSuite 
application, buttons and images from LogicDIS’s 
graphic designer were included. The model of the 
order insertion process comprises 15 scenarios, 12 
fluents and 19 showwhen rules. The photograph in 
Figure 8 shows us working with users. The users were 
given a view to interact with and asked to perform 
certain tasks. This initiated discussion as to how well 
the system supported them achieving their goals, and 
what might be changed in order to make it more 
effective. The effort involved in developing the 
scenarios and animation was half a day’s work.  

The screenshot in Figure 9 shows the view that the 
user sees towards the end of the process when they are 
assembling the products that make up the order. At this 
point they have successfully selected a company and 
customer, and completed the order header, but have 
not yet specified the details of the order. As a result of 
the animation, changes were introduced in the way 
orders are to be placed. 

 
9. Discussion and Related Work 

 
The idea of graphic animation based on a behaviour 

model is not in itself novel. Many verification tools 
provide the ability to execute a behaviour model as a 
way of simulating the system being modelled. The 

output of this simulation is displayed in the context of 
the specification. For example in SPIN [8], the 
simulator highlights statements in the Promela 
specification source as execution proceeds.  

Graphical animation in these tools thus refers to 
animation of some graphical representation of the 
model specification. This is clearly a useful facility in 
debugging and understanding models – it is a facility 
provided in the LTSA which animates LTSs– however, 
it does not address the problem of communicating in a 
domain specific way with stakeholders unfamiliar with 
the modelling formalism. 

Some initial work on domain specific visualisation 
is reported by Heitmeyer [6] in the context of the SCR 
simulator. They use the image of real instrument 
panels to display the outputs and controls for a 
simulation of the function of that control panel 
specified in SCR. The form of animation is similar in 
scope to that of the Statemate [4].  

In terms of animation based on behaviour provided 
by scenarios, a noteworthy example is the LSC Play-
in/Play-out tool [5]. The tool requires scenarios to be 
played in through a mock interface of the system. Once 
the scenarios are played in, the tool can animate the 
scenarios through the same mock interface using a 
similar maximal progress to ours. However, our 
approach decouples the behavioural specification from 
the way in which the animation will be visualised. 
Hence, given one set of scenarios, different 
visualisations can be tailored according to the 
particular animation participant.  

Note that the LSC scenario notation is more 
expressive than the one we have adopted. However, 
our approach to fluent-based animation is independent 
of the behavioural specification used. The fluents can 
be used to characterise the system state from a trace, 
independently of how the trace was generated. Hence, 
it is possible for our approach to be used in 
conjunction with other scenario notations with 
executable semantics, such as LSCs.  

Our original work on animation was activity-based 
animation [16]. There, the goal is to provide smooth 
animation of the dynamic behaviour of the system 
between stable, concrete states; a kind of animation 
well suited for reactive systems. In activity-based 
animation it is the model that commands the animator 
to start or stop an animation, for instance the image of 
a production cell robot arm moving; the user simply 
changes environment conditions that enable or disable 
the occurrence of specific actions in the model. The 
animations discussed in [16] are state-based. The focus 
is on providing feedback to the user based on the 
current stable system state (or an abstraction of it). The 
user triggers actions in the model in response to this 



feedback. Thus control of animation is almost the 
opposite of [18]. Sate-based animation is therefore 
more suitable for validation of goals formulated as 
expressions on controllable system states. 

Further recent work on user interface animation 
[17] relied on a different mechanism for specifying 
visualisations. In essence, only the events enabled in 
the current state of the animated model were taken into 
account to build visualisations of system state. 
Experience has shown that constructing visualisation 
on the basis of potential future events is too limiting. 
The approach frequently leads to animations that are 
not meaningful because relevant states (from the 
stakeholders perspective) cannot always be inferred 
from these events, the history of events that led to the 
state are typically important. The current fluent-based 
animation addresses this limitation.  

The use of scenarios in requirements engineering is 
certainly a well-developed area (see for example, [1, 
24], particularly for requirements validation, elicitation 
and elaboration. Our work is very much in the spirit of 
[23] where scenarios are in conjunction with 
prototyping for goal-oriented requirement validation. 
However, rather than playing scenarios over a fixed 
prototype and using probe questions that address 
system goals, we use behaviour models to drive the 
walkthrough and use fluents to build the visualisations 
dynamically. Our work is also in line with the Inquiry 
Cycle proposed in [22] where scenarios are used to 
prompt goal elaboration. In addition, our use of goals 
as the basis for constructing visualisations is consistent 
with work on requirements and viewpoints [13, 20].  

As pointed out in [12], one of the drawbacks of 
scenario notations is that they are instance level 
descriptions. Hence, some generalisation must be done 
in order to relate them to type-level goals. In our work 
this is done when defining the fluents in terms of 
instance specific events. However, this is an area that 
needs further work. We are currently investigating the 
use of architecture descriptions in combination with 
scenarios to improve scenario generalisation. 

Another area for further investigation is potential 
exploitation of model checking. Although animation 
techniques are effective to support validation and 
elaboration, they rely participants exploring system 
behaviour sufficiently thoroughly as to cover relevant 
situations. A complementary approach is to use model 
checking techniques to find traces of particular interest 
and to use them to direct the animation. In this way, 
the animation can lead participants through uses of the 
system that need special consideration. Examples of 
traces that could be found through model checking are 
traces leading to inconsistencies as described in 
Sections 6 and 7, and violations of system goals. These 

traces could be automatically generated using the 
LTSA model checker that is at the heart of our toolset.  

 
10. Conclusion 
 

A particular novelty of the approach discussed in 
this paper is the mechanism in which the visualisations 
can be constructed based on abstract system states 
rather than the concrete states that the model designer 
may have chosen to specify system behaviour. This 
allows for greater generality and flexibility, and allows 
engineers to produce animations that have a concrete 
relation to the goals that the participating stakeholder 
has in mind. 

As explained in previous sections, our work builds 
on the goal-based requirements engineering approach 
of van Lamsweerde. In particular we exploit the fact 
that goal refinements eventually deliver goals that can 
be formulated in terms of controllable system states. 
This is where we introduce fluents to relate these goals 
to a behavioural specification given in terms of 
scenarios. Although fluents are the mechanism for 
relating scenario event with goals, the engineer must 
still decide which are the events that make each fluent 
true and false. In future work we will investigate more 
rigorous methods for supporting these decisions. 

In [12] a method for inferring goals from scenarios 
is presented. In essence, what is being inferred is how 
events change the abstract state of the system. The 
difficulty resides in knowing what are the relevant 
state abstractions that should be inferred. In a sense, 
this is the opposite of what is done in this approach. 
We take goals that are expressed in terms of abstract 
system states, and try to find the events that make the 
system enter and exit these states. These events are 
what define the fluents used for animation. [12] also 
provides a detailed discussion on the intertwining of 
scenario and goal based RE. The focus is mainly on 
how the elaboration of one can prompt the elaboration 
of the other. This paper contributes to this intertwining 
by showing how the combination of both scenarios and 
goals can be exploited for animation, and hence 
requirements validation. We believe that visualising 
how components interact to realise goals helps to 
facilitate elaboration of requisites and responsibility 
assignments [11]. Further work is needed to confirm 
this. 
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