
Fluent-Based Animation: Exploiting the Relation between
Goals and Scenarios for Requirements Validation

Sebastian Uchitel, Robert Chatley, Jeff Kramer, Jeff Magee1
Department of Computing, Imperial College London

[rbc, jk, su2, jnm]@doc.ic.ac.uk

1 Partially supported by STATUS ESPIRIT (IST-2001-32298) and EPSRC READS GR/S03270/01

Abstract

Scenarios and goals are effective and popular
techniques for requirements definition. Validation is
essential in order to ensure that they represent what
stakeholders actually want. Rather than validating
scenarios and goals separately, possibly driving the
elaboration of one through the validation of the other,
this paper focuses on exploiting the relation between
goals and scenarios. The aim is to provide effective
graphical animations as a means of validating both.
Goals are objectives that a system is to meet. They are
elaborated into a structure that decomposes
declarative goals into goals that can be formulated in
terms of events that can be controlled or monitored by
the system. Scenarios are operational examples of
system usage. The relation between scenarios and
goals is established by means of fluents that describe
how events of the operational description change the
state of the basic propositions from which goals are
expressed. Graphical animations are specified in terms
of fluents and driven by a behaviour model synthesised
from the operational scenarios.

1. Introduction

Scenario-based notations such as Message
Sequence Charts (MSCs) [9] describe how
components, the environment and users interact in
order to provide system level functionality. Their
simplicity and intuitive graphical representation
facilitate stakeholder involvement and make them
popular for documenting intended system behaviour.
However, scenarios are operational descriptions that
leave the required properties of the intended system
implicit. Scenarios provide a common ground on
which goals can be elicited, discussed, and elaborated,
but are not requirements in their own right.

Goals [11] focus on the objectives of the systems to
be constructed. They are declarative statements and as
such complement the operational nature of scenarios.
Goals are refined into sub-goals that can be
operationalised and assigned to specific components.
Hence, goals can serve as a framework for eliciting
and elaborating operational descriptions of the required
system.

goal elaboration scenario elaboration

object/operation capture

goal operationalization

responsability assignment

validation

Figure 1 : Interweaving goal-based and scenario-

based RE. (Dashed elements taken from [12]).

There has been extensive research on the
relationship between scenarios and goals, focusing
mainly on how one can aid the elaboration of the other.
Dotted elements in Figure 1 depict how goal-based and
scenario-based RE can be integrated according to van
Lamsveerde [12]. All arrows depict data dependencies.

Scenarios may prompt the elicitation of underlying
goals or be used for goal inference (Figure 1, right-to-
left arrow). They can provide examples of how goals
can be realised or be witnesses of violations of these
goals (Figure 1, left-to-right arrow). Goals may drive
the elaboration of new scenarios (Figure 1, left-to-right
arrow). However, less attention has been given to how
scenarios and goals can be used together to facilitate
requirements elicitation, elaboration and validation. In
this paper we focus on validation.

Validation is a key requirements activity.
Requirements engineers must not only elicit and
document scenarios and goals, but also validate that

these are indeed what stakeholders want [19].
Animation is an effective validation technique, and we
show that combining goals with scenarios can result in
effective animations that not only support scenario and
goal validation, but can also prompt their elaboration.

In its simplest form, animation means allowing
stakeholders to step through sequences of events
dictated by some behaviour model. More sophisticated
animations allow stakeholders to visualise some aspect
of the system state as they step through the alternative
events. However, this is not straightforward to
implement if behaviour has been described in the form
of scenarios, where the notion of state is implicit.
Which system states should be inferred from what are
essentially sequences of events? One possibility could
be to assume that each event in the scenario leads to a
new system state. However, this is too naïve.

To present a meaningful animation to a stakeholder,
it is not the system state that is relevant but
abstractions of it that relate to the concerns of the
stakeholder participating in the animation. Goals can
be the source for establishing a meaningful partition of
system state, because they capture the reasons why the
system behaves as described in the scenarios.

We believe that animations of system behaviour
should be driven by scenarios and displayed from the
perspective of the stakeholder participating in the
animation and in a way that relates to the stakeholder’s
goals. For example, the intermediate states that the
system may go through while performing user
authentication could be considered irrelevant from the
perspective of a user accessing email on a web-based
email client. However, given a privacy goal on email
access, partitioning the system state space into those
where the user has been authenticated and logged on,
from those in which authentication has failed, is very
relevant.

To perform such animations, a relation between
scenarios and goals must be established. We build on
van Lamsveerde's approach, in which goals are
successively AND-OR refined (Figure 1, left circle
arrow) into requisites. Requisites are "goals that can be
formulated in terms of states controllable by some
individual agent". Controllable state refers to states
that are entered and exited on events that are controlled
or monitored by the agent. However, the goals we use
to relate to operational scenarios need not be
requisites. We use fluent linear temporal logic (FLTL)
formulas [3] to express goals that can be formulated in
terms of states controllable by the software system.
These FLTL formulas have as basic elements fluents,
which are central to establishing the relation between
goals and scenarios.

Fluents are abstractions of system state specified in
terms of the occurrence of events such as those that
appear in operational scenarios. Miller and Shanahan
[18] informally define (propositional) fluents as
follows: “Fluents (time-varying properties of the
world) are true at particular time-points if they have
been initiated by an event occurrence at some earlier
time-point, and not terminated by another event
occurrence in the meantime. Similarly, a fluent is false
at a particular time-point if it has been previously
terminated and not initiated in the meantime.”

Fluents are also central to specifying animations.
The same fluents that are used to express system goals
are used to construct visualisation rules that are used
by an animator to build graphical views of the system.
This results in intuitive, simple visualisation
specifications, and also in animations that support
validation of goals and scenarios used in conjunction.
By having stakeholders animate system behaviour
viewed through abstract states defined in terms of
fluents, not only are the scenarios validated as they
drive the animation but also confidence in the validity
of the system goals is gained.

The toolset that we have developed to support our
approach uses standard web browsers and HTTP and is
particularly well suited for the animation of web-based
applications.

The paper is organised as follows: Section 2
presents background on MSCs, Labelled Transition
Systems and model synthesis. We also introduce a
small example to illustrate our approach. Section 3
introduces fluents and goals and Section 4 gives an
overview to our animation approach. Section 5 details
how visualisations are specified using fluents. In
Section 6 we describe how our approach can prompt
goal and scenario elaboration. Section 7 explains the
multi-user extensions. Section 8 gives an account of
our experience using the approach and the paper
concludes with a discussion and related work.

2. Scenarios and Behaviour Models

The notation we use for documenting scenarios is a
syntactic subset of the message sequence chart (MSC)
standard of the International Telecommunication
Union [9] and of UML 2.0 sequence diagrams [21].
For a detailed and formal description of the language
refer to [25]. A scenario-based specification consists of
several basic MSCs and one high-level MSC. A basic
MSC (bMSC) describes a finite interaction between a
set of components (see Figure 2). Each vertical line,
called an instance, represents a component. Each
horizontal arrow represents a synchronous message, its

source on one instance corresponds to a message
output and its target on a different instance
corresponds to a message input. A bMSC defines a
partial ordering of messages, which in turn defines a
set of sequences of message labels (called traces) that
are all the possible orderings of the partial order of
messages. In Figure 2 only one system trace is defined:
<enable, enterPwd, authenticate, allSubjects,
selectMsg, sendMsg, closeMsg, allSubjects, logout>.

Figure 2 : User reads email scenario.

Figure 3 : hMSC for web-mail system

A high-level MSC (hMSC) allows the composition
of bMSCs. It is a directed graph where nodes represent
bMSCs and edges indicate their possible continuations.
The hMSC shows how the system can evolve from one
bMSC to another. Figure 3 shows the hMSC for a
simple model of a web-based email system. Once a
user has logged in, they can view messages.
Alternatively, they can fail to log in correctly (possibly
repeatedly). In addition, the administrator may disable
the user at any point. hMSCs also have an initial node
(the init box in Figure 3). The behaviour of an MSC
specification is given by a set of sequences of message
labels: those determined by composing sequentially the
bMSCs of any maximal path in the hMSC, where a
maximal path is a path that cannot be extended further.

Note that this corresponds to the adoption of weak
sequential composition, which is the standard
interpretation of hMSCs [9].

We use Labelled Transition Systems (LTSs) [10] to
model the behaviour of communicating components in
a concurrent system. A LTS (Figure 4) is a state
transition system where transitions are labelled.
Transition labels model the messages components send
and receive. The special label τ models an internal
event that is unobservable by other components. A
trace of P is a sequence of observable events that P can
perform starting at its initial state. In addition, we use
an operation on LTS called parallel composition
(based on the || composition operator used in CSP [7])
to model the system that results from composing
components such that they execute asynchronously but
synchronise on all shared message labels. In other
words, message labels are interpreted as handshaking
communication between components. For a detailed
explanation refer to [15].

We use a LTS synthesis technique to automate the
construction of behaviour models from MSCs. We
construct one model for each component that appears
in the MSC specification (Figure 4 shows the LTS of
the Server component from Figure 2). The LTS
alphabet is the set of messages the component sends
and receives in the MSC specification.

enable enterPwd

disable invalidPwd

authenticate allSubjects logout

disable

selectMsg

enterPwd

sendMsg

logout

disable

closeMsg

0 1 2 3 4 5 6 7

Figure 4 : Synthesised LTS for Server component

Once a LTS has been synthesised for each
component, the parallel composition of all LTSs yields
what we call a minimal architecture model of the MSC
specification. This means that it is the smallest model
with respect to trace inclusion that preserves the
component structure and interfaces of the MSC
specification and that exhibits all the traces specified in
the MSC specification. Note that minimality is not
enough to guarantee that the architecture model will
not provide unspecified behaviours: implied scenarios
can arise due to mismatches between the component
structure and the traces specified in the MSC

specification. See [25] for a detailed explanation of
architecture models, synthesis and implied scenarios.

3. Goals and Fluents

We use goals in the spirit of van Lamsveerde’s
goal-oriented requirements engineering approach,
KAOS (See [11] for an overview). Goals are
considered to be objectives that a system should meet.
Goals can be declarative statements that address not
only questions on WHAT the system should do but
also WHY it should do so. High-level goals are AND-
refined into sets of sub-goals, meaning that the
satisfaction of sub-goals is a sufficient condition for
the satisfaction of the higher-level goals. By AND-
refinement high-level goals can be decomposed into
goals (called requisites) that can be formulated in
terms of states controllable by some component. At
this stage, Lamsveerde’s approach advocates assigning
requisites to components and elaborating how the
component can realise the requisite through a series of
operations. This entails that there is a strong relation
between component operations and the predicates on
states from which requisites are formulated. In our
event-based models, it is natural to formulate requisites
from propositions that are predicates on the occurrence
of events. We propose using “fluent” propositions to
naturally formulate goals in terms of states controllable
by a set of components.

From [3], we define a fluent Fl by a pair of sets, a
set of initiating actions IFl and a set of terminating
actions TFl: Fl ≡ 〈 IFl , TFl 〉 where IFl , TFl ⊂ Act and
IFl ∩ TFl = ∅. In addition, a fluent Fl may initially be
true or false at time zero as denoted by the attribute
InitiallyFl. The set of atomic propositions from which
FLTL (the linear temporal logic of fluents) formulas
are built is the set of fluents Φ. Therefore, an
interpretation in FLTL is an infinite word over 2Φ,
which assigns to each time instant the set of fluents
that hold at that time instant. An infinite trace

>< L210 aaa over Act also defines an FLTL
interpretation >< L210 fff over 2Φ as follows: ∀i∈N,
∀ Fl ∈ Φ, Fl ∈ fi iff either of the following holds
−),0(FlkFl TaikNkInitially ∉≤≤⋅∈∀∧
−)),()()((: FlkFlj TaikjNkIaijNj ∉≤<⋅∈∀∧∈∧≤∈∃

In other words, a fluent holds at a time instant if and
only if it holds initially or some initiating action has
occurred, and in both cases, no terminating action has
yet occurred. Using the syntax of the LTSA [14] we
can specify the following fluents that relate to the
simple email system:
fluent LoggedIn = <authenticate, {logout, disable}>

fluent Registered = <enable, disable>
fluent ReadingMsg = <selectMsg, closeMsg>
The LoggedIn fluent specifies that for a user to be in
the logged in state, that user must have previously been
authenticated by an authenticate action and that the
user must not have logged out or been disabled by the
administrator. The Registered fluent specifies that a
user is registered from the point that user is enabled by
the administrator until disabled. The ReadingMsg
fluent specifies the state in which a user can read a
message. Fluents default to initially false. Given these
fluents, we can specify firstly, the system goal that a
logged in user must always be registered and secondly,
that a user must always be logged in to read a message.
In the following, [] is the temporal always operator,
-> implication and && conjunction.
assert LegalAccess = [](LoggedIn -> Registered)
assert PrivateRead = [](ReadingMsg -> LoggedIn)

These two goals can be related to a higher-level
goal concerned with the security of the system. In
doing goal decomposition, this higher-level goal is
refined by the conjunction of LegalAccess and
PrivateRead. Thus, having formalised the lower-
level goals, the higher-level goal is specified by:
assert Security = (LegalAccess && PrivateRead)

The fluents involved in PrivateRead include
events from several different agents. For instance,
logout is an event shared by user and server, while
disable is an interaction between the administrator
and the server. In the approach described in this paper,
we do not require goals to be formulated in terms of
states controllable by an individual component (i.e.
requisites), but potentially by a set of components that
may interact in order to realise the goal. These
components and their interactions are described in the
operational scenarios.

4. Animation

In this section we give an overview of the model we
adopt for animation. In the next section we described
the details of how systems states captured by fluents
are rendered as Web pages.

Animation is performed by three components: an
animator, a visualiser and a participant (top of Figure
5). In fact, there can be several participants, each of
which interacts through a standard web browser;
however, to simplify presentation we defer the
explanation of multi-user animations to Section 7. Our
conceptual animation model relies on inputs (bottom of
Figure 5): scenarios in the form of MSCs, a goal graph
that has been refined to goals that can be formulated in
terms fluents, and the roles that participants are to play
in the animation.

Participant nBehaviour
 Model
(LTS)

Visualisation
Spec.

event

fluent valuation

requestPage(event)

sendPage

Data dependency

x
Data flowScenarios

(MSCs)
Goals
(FLTL)

Animator Visualiser Participant 1

Participants

Fluents Controlled
events

sendPage
requestPage(event)

Figure 5 : Conceptual Animation Model

The animator component uses a behaviour model in
the form of a LTS that is the result of the LTS
synthesis (Section 2 and [25]) from the given
scenarios. The animator uses the behaviour model to
react to events controlled by the animation
participants. The animator also has access to the
definitions of the fluents used in specifying goals. It
keeps track of the value of fluents during an animation
and forwards these values to the visualiser, which in
turn uses them to construct visualisations of system
state, based on these values. Finally, the animator is
informed as to which transitions of the model
correspond to events that are to be controlled by the
participant. The choice of these controlled events
depends mainly on the role stakeholders participating
in the animation are to have. For instance, if a
participant is to play the role of a user of the webmail
system described previously, the set of controlled
events is: {enterPwd, selectMsg, closeMsg}.

The visualiser component requires a visualisation
specification. This specification is a mapping from
fluents to visual elements. When the component needs
to produce a visualisation of the system state, it will
compose all visual elements that correspond to fluents
that are true in that state. The visual elements also
include active elements (such as buttons and
hyperlinks) that are related to events that are
controllable by the participant. These active elements
allow participants to trigger the occurrence of the
events they control. Animation proceeds as follows:
START ;
1- Animator runs model until a state is reached in which all

outgoing actions are labelled by controlled actions. The
values of fluents are kept up to date as actions are
executed. Fluent values passed to Visualiser.

2- Visualiser accepts HTTP request and returns HTML
rendering of page using fluent values.

LOOP:
3- Visualiser accepts HTTP request with selected event

parameter. Event passed to Animator.
4- If the event does not correspond to an outgoing transition

then ERROR, otherwise, model state advanced as in 1
above and updated fluent values passed to Visualiser.

5- Visualiser returns HTML rendering of page according to
current fluent values.

Note that animation only renders stable states,
where a stable state is one in which all outgoing
transitions are labelled by controlled actions. This form
of maximal progress is widely adopted in modelling
reactive systems and is, for example, consistent with
Statechart semantics in which all microsteps, grouped
into a macrostep, are executed before a transition to the
next state occurs.

The tool that we have developed to support our
approach is an extension of the Labelled Transition
Systems Analyser (LTSA) tool [14]. LTSA serves as
the animator component of our model, while a
specially developed plugin implements the Visualiser
component. This plugin has a small web server within
it, that can serve pages to the different participants’
standard web browsers.

5. Specifying Visualisation using Fluents

The visualisation specification relates the system
state with a web page that is presented to participants
to convey that state. The specification thus consists of
rules that map state to visual elements. Rather than
tying these visualisation rules to concrete system states
(e.g. states of the LTS synthesised from scenarios), we
map fluent expressions which characterise abstract
states to visual elements.

Note that fluent expressions define abstract states
that crosscut the concrete states of the behaviour
model. This is because the truth value of a fluent does
not depend on the concrete state the behaviour model
is in at a given point, rather it depends on the history of
events that led to the concrete state. This feature
decouples behaviour and goal modelling, providing an
abstract mechanism for linking the two.

Using abstract states that are relevant to the
participant and that relate to system goals is more
effective in supporting scenario and goal validation
since many concrete system states in a behavioural
model are not directly meaningful to a stakeholder in
the context of a specific animation.

Fluent expressions are constituted by fluent
propositions used in system goals, expressed in FLTL.
Examples of these were presented in section 3. We
associate fluent expressions with visualisation
elements by means of showwhen rules. In the context
of the LTSA tool, these rules are encoded in XML. In
the following, we present an abstract syntax in which
bracketing by tags is represented by indentation. Tags
are shown in bold.

The visualisation rule depicted below specifies that
the HTML in the display section is included in the
returned web page when the fluent LoggedIn does

not hold. The display section of a rule uses HTML
extended with some additional constructs which are
rewritten by the Visualiser when constructing a
webpage. One of these additional constructs is button
– this specifies a controlled action in the model that is
returned as an attribute of the HTTP request when the
button, that the construct causes to be displayed on the
web page, is pressed. In other words, pressing the
button on the web page allows a model transition
labelled with the action – in this case enterPwd – to
occur.
showwhen
 not LoggedIn
display
 <!— HTML for username, password boxes -->
 table tr
 td input type="text" name="userid"
 td input type="password" name="pwd"
 td button enterPwd

Figure 6 : Visualisation of not LoggedIn

Instead of the button we can use hyperlinks to
control actions. For instance, the following can be used
to display a message subject that, if clicked on, would
trigger the action selectMsg. Images can be associated
to the link in the same manner.
link
 action selectMsg</action>
 content “Your diploma has arrived”

Typically, a visualisation specification will have
many showwhen rules. When the visualiser receives
the truth-values of all fluents from the animator, it
builds a web page by aggregating all of the HTML
fragments in showwhen rules whose expressions
evaluate to true. In addition, the specification may
include an HTML header and footer to be included on
every generated page. This helps to provide a
consistent look and feel to the pages of the
visualisation.

In order to enrich the visualisation, we allow the
possibility of displaying data previously entered or
selected by the user. For instance, when logging in, the
user supplies their username. On subsequent screens,
we can use this information to add a greeting at the top
of the page using the following rule.
showwhen
 loggedIn
display
 <!-- greet user -->

 “Hello”
 value name="userid"
 “welcome to webmail.”

 The value tag is another extension to HTML that
is rewritten by the visualiser and replaced with the
value that the user entered when logging in. The name
"userid" matches the name of one of the input
elements in the previous rule.

We also support the addition of behavioural
constraints based on data input by the user. For
example, we may specify that the authenticate
event will only be performed when the username and
password that the user typed match particular values.
This provides the participant with a better experience
of the system than if they were authenticated or not
based only on a non-deterministic choice, which is the
behaviour specified in the scenarios for this example.
action authenticate
conditions
 and

 equal key="userid" value="demo"
 equal key="pwd" value="demo"

6. Exploiting Inconsistency in Visualisation
Specifications

The fact that user controlled events are made
accessible to the participant by means of showwhen
rules may lead to inconsistency. These inconsistencies
may simply signal a trivial mistake in the visualisation
specification; however, more importantly, they can
also prompt the elaboration of scenarios and goals

There are two manifestations of an inconsistent
visualisation specification. The first is when a
controlled event is made available to a participant at a
certain point during the animation, but the underlying
behaviour model does not allow that controlled event
to occur. In these cases, if the participant triggers the
event, the animator cannot react to it as no scenario
describing the appropriate behaviour was given.

This type of inconsistency occurs when there is a
mismatch between visualisation and behaviour. It may
be the case that the visualisation criteria are correct
(that it is reasonable to allow the participant to trigger
the event in the current abstract state) and that the
scenario being animated was not considered in the
original set of scenarios. Hence the inconsistency
signals an incompleteness of the scenario specification.
On the other hand, it may be the case that the abstract
state has been incorrectly defined, and consequently
some visual elements are being displayed
inappropriately. Incorrect definition of the abstract
state can be a result of incorrect fluent expressions, or
incorrect definition of the initiating and finalising
events for fluents. In either case, because fluents and

fluent expressions are extracted from goals, goal
elaboration may be required. Finally, the inconsistency
may signal that the goals are not being satisfied by the
operational behaviour of the system; hence revision of
either goals or scenarios is required.

The second manifestation of an inconsistent
visualisation specification is when a controlled event is
not made available to the participant at a state when
the event is possible in the underlying behaviour
model. This means that the participant is being denied
the possibility of animating certain system behaviours.
These inconsistencies may indicate the existence of
superfluous scenarios or, as before, a problem with the
fluents and fluent expressions defining abstract states.
In either case, the inconsistency may prompt the
elaboration of scenarios and goals.

The animation tool recognises these inconsistencies
and informs a participant of when they occur. If the
participant clicks on a controlled event that is not
enabled in the underlying behaviour model, the
visualiser will return an error message to them – step 4
of the outline animation algorithm of section 4. In
addition, when the visualiser component builds a page
for the participant, it checks if there are any enabled
controlled events in the current state of the model, that
are members of the controlled set of actions for that
participant, and for which the page has no active
elements. If this is so, it adds default buttons for them
to the page.

7. Multi-Participant Animations

Based on our experience with scenarios and

animations, we have recognized the benefits of
supporting multi-participant animations. These
animations allow stakeholders to explore how the
behaviour of system entities affect each other. Multi-
participant animations are particularly useful in
concurrent and distributed systems, and systems that
can be used concurrently by multiple users.

To support multi-participant animations,
visualisation specification provides the notion of role.
Hence, controllable events and visualisation rules are
defined on a role basis, and each animation participant
is given a role during the animation.

In this way, multiple participants can control
different sets of events and have completely different
visualisations of system state. Each visualisation is
more akin to the fluents, and hence the goals, that are
relevant to each role.

Multi-participant animations do, however, introduce
some additional behaviour. The cause for this is the
choice of a decoupled architecture of our tool: Web

browsers used by participants can only request web
pages from the Visualiser. Hence, the visualiser cannot
inform participants of any change of state if the
browser is not refreshed. This is crucial in a multi-
participant animation. If one user is visualising the
state through their browser, and meanwhile another
user has triggered an event and hence a change of
state, the first user will not see the change of state. The
consequence of this is that the first user may choose to
trigger an event that was enabled in the original state,
but is no longer enabled.

The situation described above, is exactly what
happens in web-based applications, and makes the
architecture we have adopted particularly well suited
for animating them. Consequently, we have extended
our tool to cope with these situations and to provide
appropriate feedback when they arise.

8. Experience

The techniques described above have been used to
create an early prototype of an application called
eSuite, developed by the Greek software company
LogicDIS. The eSuite application provides a layer on
top of an Enterprise Resource Planning system that
enables users to interact with the system via a web
interface. Typical uses of the system include stock
control and the placing and monitoring of orders for
products. LogicDIS are in the process of developing a
new version of eSuite, and wished to validate their
designs for the new system with their users before
beginning the development phase.

Working with LogicDIS developers, we created a
scenario specification that detailed the intended
behaviour of a particular part of the system: the order
insertion procedure. The overall goal that the user
hopes to achieve using this part of the system is that an
order is placed once they receive an instruction from a
customer (perhaps by telephone). We used the
Milestone Refinement Pattern [2] repeatedly to
decompose this goal and determine a number of
intermediate states that need to be achieved in order to
achieve the overall goal. These were: to have selected
a company, selected a customer, completed payment
and delivery details (the order header), and completed
the details of the order. More formally:
 [](instruction -> <> orderPlaced)

[](instruction -> <> companySelected) /\
[](companySelected -> <> orderPlaced) /\

[](companySelected -> <> customerSelected) /\
[](customerSelected -> <> orderPlaced) /\

[](customerSelected -> <> headerCompleted) /\
[](headerCompleted -> <> orderPlaced)

Figure 7 : Refinement of PlaceOrder Goal

Figure 8 : User-centred design session

Figure 9 : Screenshot of simulation of eSuite

A set of fluents were derived from these subgoals
and, based on these fluents, a set of visualisation rules.
To try and capture the look-and-feel of the eSuite
application, buttons and images from LogicDIS’s
graphic designer were included. The model of the
order insertion process comprises 15 scenarios, 12
fluents and 19 showwhen rules. The photograph in
Figure 8 shows us working with users. The users were
given a view to interact with and asked to perform
certain tasks. This initiated discussion as to how well
the system supported them achieving their goals, and
what might be changed in order to make it more
effective. The effort involved in developing the
scenarios and animation was half a day’s work.

The screenshot in Figure 9 shows the view that the
user sees towards the end of the process when they are
assembling the products that make up the order. At this
point they have successfully selected a company and
customer, and completed the order header, but have
not yet specified the details of the order. As a result of
the animation, changes were introduced in the way
orders are to be placed.

9. Discussion and Related Work

The idea of graphic animation based on a behaviour

model is not in itself novel. Many verification tools
provide the ability to execute a behaviour model as a
way of simulating the system being modelled. The

output of this simulation is displayed in the context of
the specification. For example in SPIN [8], the
simulator highlights statements in the Promela
specification source as execution proceeds.

Graphical animation in these tools thus refers to
animation of some graphical representation of the
model specification. This is clearly a useful facility in
debugging and understanding models – it is a facility
provided in the LTSA which animates LTSs– however,
it does not address the problem of communicating in a
domain specific way with stakeholders unfamiliar with
the modelling formalism.

Some initial work on domain specific visualisation
is reported by Heitmeyer [6] in the context of the SCR
simulator. They use the image of real instrument
panels to display the outputs and controls for a
simulation of the function of that control panel
specified in SCR. The form of animation is similar in
scope to that of the Statemate [4].

In terms of animation based on behaviour provided
by scenarios, a noteworthy example is the LSC Play-
in/Play-out tool [5]. The tool requires scenarios to be
played in through a mock interface of the system. Once
the scenarios are played in, the tool can animate the
scenarios through the same mock interface using a
similar maximal progress to ours. However, our
approach decouples the behavioural specification from
the way in which the animation will be visualised.
Hence, given one set of scenarios, different
visualisations can be tailored according to the
particular animation participant.

Note that the LSC scenario notation is more
expressive than the one we have adopted. However,
our approach to fluent-based animation is independent
of the behavioural specification used. The fluents can
be used to characterise the system state from a trace,
independently of how the trace was generated. Hence,
it is possible for our approach to be used in
conjunction with other scenario notations with
executable semantics, such as LSCs.

Our original work on animation was activity-based
animation [16]. There, the goal is to provide smooth
animation of the dynamic behaviour of the system
between stable, concrete states; a kind of animation
well suited for reactive systems. In activity-based
animation it is the model that commands the animator
to start or stop an animation, for instance the image of
a production cell robot arm moving; the user simply
changes environment conditions that enable or disable
the occurrence of specific actions in the model. The
animations discussed in [16] are state-based. The focus
is on providing feedback to the user based on the
current stable system state (or an abstraction of it). The
user triggers actions in the model in response to this

feedback. Thus control of animation is almost the
opposite of [18]. Sate-based animation is therefore
more suitable for validation of goals formulated as
expressions on controllable system states.

Further recent work on user interface animation
[17] relied on a different mechanism for specifying
visualisations. In essence, only the events enabled in
the current state of the animated model were taken into
account to build visualisations of system state.
Experience has shown that constructing visualisation
on the basis of potential future events is too limiting.
The approach frequently leads to animations that are
not meaningful because relevant states (from the
stakeholders perspective) cannot always be inferred
from these events, the history of events that led to the
state are typically important. The current fluent-based
animation addresses this limitation.

The use of scenarios in requirements engineering is
certainly a well-developed area (see for example, [1,
24], particularly for requirements validation, elicitation
and elaboration. Our work is very much in the spirit of
[23] where scenarios are in conjunction with
prototyping for goal-oriented requirement validation.
However, rather than playing scenarios over a fixed
prototype and using probe questions that address
system goals, we use behaviour models to drive the
walkthrough and use fluents to build the visualisations
dynamically. Our work is also in line with the Inquiry
Cycle proposed in [22] where scenarios are used to
prompt goal elaboration. In addition, our use of goals
as the basis for constructing visualisations is consistent
with work on requirements and viewpoints [13, 20].

As pointed out in [12], one of the drawbacks of
scenario notations is that they are instance level
descriptions. Hence, some generalisation must be done
in order to relate them to type-level goals. In our work
this is done when defining the fluents in terms of
instance specific events. However, this is an area that
needs further work. We are currently investigating the
use of architecture descriptions in combination with
scenarios to improve scenario generalisation.

Another area for further investigation is potential
exploitation of model checking. Although animation
techniques are effective to support validation and
elaboration, they rely participants exploring system
behaviour sufficiently thoroughly as to cover relevant
situations. A complementary approach is to use model
checking techniques to find traces of particular interest
and to use them to direct the animation. In this way,
the animation can lead participants through uses of the
system that need special consideration. Examples of
traces that could be found through model checking are
traces leading to inconsistencies as described in
Sections 6 and 7, and violations of system goals. These

traces could be automatically generated using the
LTSA model checker that is at the heart of our toolset.

10. Conclusion

A particular novelty of the approach discussed in
this paper is the mechanism in which the visualisations
can be constructed based on abstract system states
rather than the concrete states that the model designer
may have chosen to specify system behaviour. This
allows for greater generality and flexibility, and allows
engineers to produce animations that have a concrete
relation to the goals that the participating stakeholder
has in mind.

As explained in previous sections, our work builds
on the goal-based requirements engineering approach
of van Lamsweerde. In particular we exploit the fact
that goal refinements eventually deliver goals that can
be formulated in terms of controllable system states.
This is where we introduce fluents to relate these goals
to a behavioural specification given in terms of
scenarios. Although fluents are the mechanism for
relating scenario event with goals, the engineer must
still decide which are the events that make each fluent
true and false. In future work we will investigate more
rigorous methods for supporting these decisions.

In [12] a method for inferring goals from scenarios
is presented. In essence, what is being inferred is how
events change the abstract state of the system. The
difficulty resides in knowing what are the relevant
state abstractions that should be inferred. In a sense,
this is the opposite of what is done in this approach.
We take goals that are expressed in terms of abstract
system states, and try to find the events that make the
system enter and exit these states. These events are
what define the fluents used for animation. [12] also
provides a detailed discussion on the intertwining of
scenario and goal based RE. The focus is mainly on
how the elaboration of one can prompt the elaboration
of the other. This paper contributes to this intertwining
by showing how the combination of both scenarios and
goals can be exploited for animation, and hence
requirements validation. We believe that visualising
how components interact to realise goals helps to
facilitate elaboration of requisites and responsibility
assignments [11]. Further work is needed to confirm
this.

References

[1] CREWS, Cooperative Requirements Engineering
With Scenarios, http://Sunsite.Informatik.RWTH-
Aachen.DE/CREWS, 1999.

[2] R. Darimont and A. v. Lamsweerde, "Formal
Refinement Patterns for Goal-Driven Requirements
Elaboration" in 4th Symp. on Foundations of Software
Engineering, San Francisco, 1996.
[3] D. Giannakopoulou and J. Magee, "Fluent Model
Checking for Event-Based Systems" in ESEC/FSE
2003, Helsinki, 2003.
[4] D. Harel, et al. "STATEMATE: A Working
Environment for the Development of Complex
Reactive Systems", IEEE Transactions on Software
Engineering, 16 p. 403-414, 1990.
[5] D. Harel and R. Marelly, Come, Let's Play:
Scenario-Based Programming Using LSCs and the
Play-Engine: Springer-Verlag, 2003.
[6] C. Heitmeyer, C. Kirby, and B. Labaw, "The SCR
method for Formally Specifying, Verifying and
Validating requirements: Tool Support" in Intl. Conf.
on Software Engineering (ICSE'97), Boston, 1997.
[7] C. A. R. Hoare, Communicating Sequential
Processes. Englewood Cliffs, Prentice Hall, 1985.
[8] G. J. Holzmann and D. Peled, "The State of Spin"
in Computer Aided Verification, 1996.
[9] ITU, "Message Sequence Charts", International
Telecommunications Union. Rec. Z.120, 2000.
[10] R. Keller, "Formal verification of parallel
programs", Communications of the ACM, 19(7), p.
371-384, 1976.
[11] A. v. Lamsweerde, "Goal-Oriented Requirements
Engineering: A Guided Tour" in 5th IEEE Intl. Sym.
on Requirements Engineering (RE'01), Toronto, 2001.
[12] A. v. Lamsweerde and L. Willemet, "Inferring
Declarative Requirements Specifications from
Operational Scenarios", IEEE Trans. on Software
Engineering, 24(12), p. 1089-1114, 1998.
[13] J. Leite and P. A. Freeman, "Requirements
Validation Through Viewpoint Resolution”", IEEE
Trans. on Software Engineering, 12(12), 1991.
[14] Magee et al., The LTSA site,
www.doc.ic.ac.uk/ltsa, 2003.

[15] J. Magee and J. Kramer, Concurrency: State
Models and Java Programs. New York: John Wiley &
Sons Ltd., 1999.
[16] J. Magee, J. Kramer, D. Giannakopoulou, and N.
Pryce, "Graphical Animation of Behavior Models" in
22nd Intl. Conf. on Software Engineering (ICSE'00),
Limerick, 2000.
[17] J. Magee, S. Uchitel, R. Chatley, and J. Kramer,
"Visual Methods for Web Application Design" in Tech
note at the IEEE Sym. on Visual and Multimedia
Software Engineering, Auckland, 2003.
[18] R. Miller and M. Shanahan, "The Event Calculus
in Classical Logic - Alternative Axiomatisations",
Linkoping Electronic Articles in Computer and
Information Science, 4(16), p. 1-27, 1999.
[19] B. Nuseibeh and S. Easterbrook, "Requirements
engineering: a roadmap" in Intl. Conf. on Software
Engineering (ICSE'00), Limerick, 2000.
[20] B. Nuseibeh, J. Kramer, and A. Finkelstein, "A
Framework for Expressing the Relationships Between
Multiple Views in Requirements Specification", IEEE
Trans. on Software Engineering, 20(10), 1994.
[21] Object Management Group, "Unified Modeling
Language (UML)", http://www.omg.org, 2004.
[22] C. Potts, K. Takahashi, and A. I. Anton, "Inquiry-
Based Requirements Analysis", IEEE Software, 11(2),
p. 21-32, 1994.
[23] A. Sutcliffe, "A technique combination approach
to requirements engineering" in 3rd IEEE International
Symposium on Requirements Engineering, Los
Alamitos, 1997.
[24] A. Sutcliffe, N. A. M. Maiden, S. Minocha, and
D. Manuel, "Supporting Scenario-Based Requirements
Engineering", IEEE Transactions on Software
Engineering, 24(12), p. 1072-1088, 1998.
[25] S. Uchitel, "Elaboration of Behaviour Models and
Scenario Based Specifications using Implied
Scenarios", Ph.D. Thesis, Imperial College, 2003.

