
LTSA-MSC: Tool Support for Behaviour Model
Elaboration Using Implied Scenariosi

Sebastian Uchitel, Robert Chatley, Jeff Kramer and Jeff Magee

Department of Computing, Imperial College
[su2 | rbc | jk | jnm]@doc.ic.ac.uk

Abstract. We present a tool that supports the elaboration of behaviour models
and scenario-based specification by providing scenario editing, behaviour
model synthesis, and model checking for implied scenarios.

Introduction

The design of concurrent systems is a complex task prone to subtle errors. Behaviour
modelling has proved to be successful in helping uncover flaws at design time;
however, it has not had a widespread impact on practitioners because model
construction remains a difficult task and because the benefits of behaviour analysis
appear at the end of the model construction effort. In contrast, scenario-based
specifications have a wide acceptance in industry and are well suited for developing
first approximations of intended behaviour; however, they are still maturing with
respect to rigorous semantics and analysis tools. This paper presents a tool for
supporting a process for elaborating system models and specifications that exploits
the potential benefits of behaviour modelling and scenario-based specifications yet
ameliorates their shortcomings.

From a novice user's perspective, the tool allows creating message sequence chart
(MSC) specifications [1], obtaining feedback on scenarios that are missing, and
adding them as positive or negative scenarios. The theory behind the feedback is that
of implied scenarios [5, 6]. They signal aspects of the MSC specification that need
further elaboration due to the concurrent nature of the specified system and the partial
nature of the specification. From an advanced user's perspective, the tool also allows
accessing the behaviour models that are synthesised for implied scenario detection.
These models are the basis for reasoning on system design. Behaviour models can be
viewed, edited, analysed and animated using the tool.

The Elaboration Process

Scenario notations such as MSCs (see Figure 1) describe two distinct aspects of a
system. Firstly, they depict a series of examples of what constitutes acceptable system
behaviour. These examples consist of sequences of messages – called traces – that

2 Sebastian Uchitel, Robert Chatley, Jeff Kramer and Jeff Magee

system components are expected to send each other. Secondly, scenario notations
outline the high-level architecture of the system. Scenarios depict with vertical
arrows, or instances, which system components are involved in providing the intended
system behaviour. They also describe component interfaces because they illustrate
which messages are being sent and received by each component. By architecture we
mean the system components and their interfaces.

Model Check

Traces

Positive or Negative Scenario Implied Scenario

Architecture
Minimal

Architecture Model

Trace Model
 Synthesis

Constraint Model
Synthesis

Architecture Model
Synthesis

Traces
Constraint Model

1)()(−= NSpecLCL

))(\)(\)((NSpecLPSpecLALi∈

Positive
Scenarios
(PSpec)

Negative
Scenarios
(NSpec)

Trace Model
)()(PSpecLTL =

)()(ALPSpecL ⊆

?))()((TLCAL ⊆

))((1 nAAA L=

(L(PSpec))

(L(NSpec))

Traces

(L(PSpec))

(C)

(i)

Fig. 1. An overview of the elaboration process

Implied scenarios indicate gaps in a scenario-based specification that are the result
of specifying the behaviour of a system from a global perspective yet expecting it to
be provided by independent entities with a local system view. If the architecture does
not provide components with a rich enough local view of what is happening at a
system level, they may not be able to enforce the intended system behaviour.
Effectively, what may occur is that each component may, from its local perspective,
believe that it is behaving correctly, yet from a system perspective the behaviour may
not be what is intended. These additional system traces resulting from the inadequate
local view of components are called implied scenarios.

The process (depicted in Figure 1) starts with a MSC specification comprised of
two parts [6]: a positive part (PSpec) that describes the intended system behaviour and
a negative part (NSpec) that describes undesired behaviour. The positive part of the
MSC specification is defined in terms of basic and high-level MSCs [1]. The negative
part is using an adapted version of basic MSCs [6]. The semantics of the MSC
language determines a set of traces for each part: L(PSpec) and L(NSpec). Note that
we interpret messages as synchronous hand-shaking communication, and also adopt
weak sequential composition for the semantics of high-level MSCs.

From the MSC specification we synthesise three different behaviour models in the
form of labelled transition systems (LTS) where transitions are labelled with the
messages that components send each other. Using the positive system traces,
L(PSpec), and architectural information, the architecture model synthesis builds the
architecture model (A) as the parallel composition of components models A1,…,An
where the alphabet of Ai coincides with the interface of component i. Thus, we have
A=(A1||…||An) where || is the LTS parallel composition operator, and L(PSpec) is a
subset of tr(A) where L(A) is the set of maximal traces exhibited by LTS A. In
addition A can be proven to be the minimal model (with respect to trace inclusion)
that complies with the MSC architecture and that includes all the specified traces

LTSA-MSC: Tool Support for Behaviour Model Elaboration Using Implied Scenarios 3

(L(PSpec)). Thus, maximal traces in L(A)\L(PSpec) are implied scenarios. The second
behaviour model we build is the trace model (T). This model is built from the set of
positive system traces (L(PSpec)), ignoring the specified architecture, such that
L(T)=L(PSpec) (assuming L(PSpec) is a regular language). The third behaviour model
we build is the constraint model (C). This is built from the set of negative system
traces (L(NSpec)) so that it captures the complement of the traces the system should
not exhibit: L(C)=L(NSpec)-1.

We are interested in maximal traces that are exhibited by the architecture model
(A), have not been specified in the positive part of the MSC specification (L(PSpec))
and have not already been explicitly prohibited in the negative part of the MSC
specification (L(NSpec)). Thus, we are interested in the following set of traces:
(L(A)\L(NSpec))\L(PSpec). These traces can be detected by model-checking
L(T)⊆L(A||C). If the inclusion does not hold, an implied scenario is generated as a
counter-example. Note that for non-regular positive MSC specifications [3], L(T)
⊆L(PSpec) holds rather than L(T)=L(PSpec). However, implied scenarios can still be
detected with the same inclusion test.

According to whether users consider the implied scenario intended or undesired
system behaviour, the positive or negative part of the scenario specification is
updated. By repeating the process it is possible to iteratively elaborate scenario-based
specifications and behaviour models

In principle, the elaboration process based cannot be guaranteed to converge to a
state where there are no more implied scenarios to be validated. This is reasonable as,
on each acceptance of an implied scenario, stakeholders could keep on introducing
new functionality in the form of traces that the underlying architecture model could
not perform, including the addition of new message labels or even components.
However, supposing that at some point all the positive behaviour of the system has
been captured, it may be possible to converge to a stable specification by rejecting the
rest of the implied scenarios. To support convergence we have introduced an
expressive negative scenario notation [6], which in our experience, assuming
L(PSpec) is regular, suffices to make the elaboration process converge. However, this
remains an open question that we intend to investigate in future work.

As mentioned earlier, four artefacts are produced as a result of the incremental
elaboration process. The first is a MSC specification that has been evolved from its
original form to cover further aspects of the concurrent nature of the system being
described, including possible functional aspects. The second is the architecture model,
which preserves the system architecture and provides the specified positive
behaviour; however, it may exhibit additional unspecified behaviour. The third is the
trace model, which captures precisely the traces specified as positive behaviour. The
fourth is the constraint model, which captures the properties that the architecture
model should comply with if it is to avoid the negative scenarios and provide only the
specified system behaviour.

The architecture model provides the basis for modelling and reasoning about
system design. In fact it is the model that needs to be further developed through
architectural and design decisions as designers move towards implementation. The
constraint model aids the design process as it models the properties that the
architecture model must satisfy.

4 Sebastian Uchitel, Robert Chatley, Jeff Kramer and Jeff Magee

An important observation regarding the convergence of the elaboration process is
that even if the iterative process is cut off before converging, it still allows the
elaboration of the initial MSC specification into a more complete system description,
and produces three behaviour models that help developers reason about the design of
the system.

Sensor Database ActuatorControl
Typical run

on
pressure
pressure

query
data

commandpressure
off

Fig. 2. A (basic) message sequence chart.

LTSA MSCPlugin

GUI

EditorPane

Specification

XML

MSC

Scenario

Synthesiser

ModelView

Controller

Fig. 3. Architecture of the MSC editor plug-in.

The Tool Implementation

The tool was implemented in Java as an extension of the Labelled Transition System
Analyser (LTSA) [2]. LTSA uses the FSP process calculus [2] to specify behaviour
models. From the FSP description, the tool generates a LTS model. The user can
animate the LTS by stepping through the sequences of actions it models, and model-
check the LTS for various properties, including deadlock freedom, safety and
progress properties. The MSC extension builds on this introducing a graphical editor
for MSCs and by generating an FSP specification from a scenario description. FSP
code is generated for the architecture, trace and constraint models described
previously. LTSA model checking capabilities (safety and deadlock freedom checks)
are then used to detect implied scenarios.

The architecture of LTSA was adapted so that extra modules can easily be plugged
in and out without having to recompile the code for the core system. All of the code
associated with a plug-in module is archived into a jar file and is dynamically loaded
by the core LTSA using techniques based on reflection. The core code then
interrogates the plug-ins to find out whether they require extra graphical components
(for instance menus, toolbars, display panels etc) to be added to user interface.

The basic architecture of the MSC editor plug-in is shown in Figure 3. Circles on
the line connecting LTSA and the MSC plug-in denote the loose coupling that exists
between them. The architecture is based on the familiar Model-View-Controller
pattern. The underlying representation of the model is an XML tree. This allows us to
easily load and save the data to a file. Other parts of the tool access and manipulate
the model through objects representing the Specification, BMSCs, HMSCs, Instances
etc, rather than exposing the underlying XML.

The view component generates and displays message sequence charts that can be
edited. The view requests data from the model and rebuilds its display every time that
it is notified that the model has changed. The GUI controller listens for events caused

LTSA-MSC: Tool Support for Behaviour Model Elaboration Using Implied Scenarios 5

by user interaction and sends updates to the model when the user edits one of the
diagrams. Then the view is informed and it rebuilds the display based on the updated
model. The controller will pass the model (Specification) to the ScenarioSynthesiser
that generates the textual FSP description of the scenario model. The core of LTSA is
then called to check the model. From the information that LTSA returns, the plug-in
can build a message sequence chart describing any implied scenario that may be
present in the model, and pass it to the GUI to display to the user. LTSA also
generates a state model that can be displayed as a set of state transition diagrams.

Conclusions and Future Work

The LTSA-MSC tool [4] has been used successfully on a number of medium-sized
case studies. It has proven to support the elaboration of scenario-based specifications
and behaviour models in a practical and cost-effective manner. As part of the
STATUS project we are taking a scenario-based approach to modelling and
simulating software systems with a view to assessing them for usability early in the
design process. We hope in the future to extend the tool with a graphical front end
that can mock up the proposed user interface for the system.

References

[1] ITU, Message Sequence Charts, International Telecommunications Union.
Telecommunication Standardisation Sector, Recommendation Z.120, 1996.

[2] J. Magee and J. Kramer, Concurrency: State Models and Java Programs. New York: John
Wiley & Sons Ltd., 1999.

[3] R. Morin, On Regular Message Sequence Chart Languages and Relationships to
Mazurkiewicz Trace Theory in International Conference on the Foundations of Software
Science and Computation Structure (FOSSACS'01), Genova, 2001.

[4] S. Uchitel, LTSA-MSC Tool. Department of Computing, Imperial College, 2001.
[5] S. Uchitel, J. Kramer, and J. Magee, Detecting Implied Scenarios in Message Sequence

Chart Specifications in Joint 8th European Software Engineering Conference (ESEC'01)
and 9th ACM SIGSOFT Symposium on the Foundations of Software Engineering
(FSE'01), Vienna, 2001.

[6] S. Uchitel, J. Kramer, and J. Magee, Negative Scenarios for Implied Scenario Elicitation in
10th ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE'02),
Charleston, 2002.

i Partially supported by STATUS ESPIRIT project (IST-2001-32298).

