

Visual Methods for Web Application Design

Robert Chatley, Jeff Kramer, Jeff Magee, Sebastian Uchitel
Dept of Computing, Imperial College London

{rbc,jk,jnm,su2}@doc.ic.ac.uk

Abstract
The paper outlines a tool-supported approach to the

design of Web applications. Behavioural models are
augmented with web-based simulations of user interfaces
to permit validation and usability assessment of systems
by end users in advance of implementation. The goal is to
correct architectural design decisions that adversely
impact usability early in the design cycle when
correction is relatively inexpensive. The behavioural
model of a system captures the interactions between the
different users roles and the set of components that
constitute the application. A visual scenario-based
language is used to specify interactions and the tool
LTSA-MSC is used to synthesise the required behavioural
model. The tool supports a visual representation of this
model that is animated in response to user-interaction
with the simulated Web interface. The combination of
these facilities permits agile incremental elaboration of a
system design.

1. Introduction

Usability is increasingly considered a key software
quality attribute, particularly crucial in web-based
applications where competition is literally one click away
[12]. To effectively design usable web applications,
usability issues should be addressed early in the
development process. To this end, high user involvement
is crucial, and so is support for rapid iterative
improvements based on user feedback. In addition, as web
applications are commonly distributed, concurrent and
multi-user, usability assessment should not be restricted
to single user observation but should also consider how
usability is affected by concurrent users collaborating (or
interfering) with one another.

In recent years a number of techniques for usability
assessment have been developed [1][2]. These techniques
are mainly based on observing users interactions with the
systems and as such require a working implementation of
the system. This means that usability assessment can only

be carried out late in the development process. At this
stage it is very expensive to go back and make major
architectural changes to the design [3]. It also makes an
agile iterative improvement of the application's usability
difficult to achieve.

Behaviour models are precise, abstract descriptions of
the intended behaviour of a concurrent and possibly
distributed system. We use a behaviour model to capture
the interaction between users and the different
components that form the target application. This model is
simulated to allow end-users of the system to interactively
explore the specified behaviour for the purposes of both
validation – is this the required behaviour, and usability –
is this the best way of performing the interaction/task. The
behaviour models we use in our approach take the form of
labelled transition systems (LTS)[5] –examples of which
are shown below in Figure 1.

Admin
run

shutdown

0 1

User
enterPwd html

enterPwd

logout

search

html

html

enterPwd

orderHeader

0 1 2 3 4 5

Figure 1 : LTS for Admin and User

components.

We have developed the tool Labelled Transition

System Analyser – Message Sequence Chart version
LTSA-MSC [4, 6, 9] to construct these LTS models from a
set of scenarios specified in a visual message sequence
chart notation – an example of this notation is illustrated in
Figure 2. The automated synthesis procedure that builds
the LTS behavioural models such as those depicted in
Figure 1 from message sequence charts [11] is described in

[7]. Behavioural models of web-applications built using
the tool are unsurprisingly easier and faster to build than
the system itself since the model focuses only on
interaction. Essentially interaction behaviour is captured
abstractly as a set of sequences of symbols that the model
accepts or generates. Each symbol models an input,
output or a processing action that the system performs.
However, one cannot ask non-technical end-users to
validate that the behavioural model satisfies the
requirements by presenting them with traces of these
abstract symbols.

Figure 2: Login Message Sequence Chart.

To address this problem, we have extended our existing
behaviour analysis tool LTSA-MSC [6] with web server
capabilities and mechanisms for associating web page
elements (graphics, buttons, etc.) with behaviour model
symbols. This representation of model symbols as web-
page elements permits users to explore the behaviour
model using a standard web browser.

2. LTSA-MSC/Web Browser interaction

The LTSA tool has been extended using a “plugin” to
allow it to provide the engine for simulations of web
applications. The plugin provides an interface so that the
model can be viewed in a standard web browser. It adds a
mini webserver to the LTSA so that it can communicate
with a standard web browser by means of the HTTP
protocol. Essentially, the web animator plugin allows us to
associate fragments of HTML with different possible
actions. These can be hyperlinks, buttons or any other
interactive element commonly found on web pages. The
plugin dynamically composes a web page from these
fragments and serves it to a web browser to display.

When the user is presented with such a webpage, they
can click on any of the links or buttons on the page, which
will cause the browser to send an HTTP request back to
the server. The server analyses this request to detect what
action the user has requested and triggers an appropriate
transition in the LTS. A new webpage is served to the user
with a new set of available actions.

Extra decision logic has been added so that it is
possible to make a distinction between actions that are
carried out by different parties. This allows us to
distinguish between actions performed by users and those
that are carried out by components of the system without
any user intervention.

The tool has been extended further to allow multiple
users to interact with the model concurrently. The
threading model in the web server was extended to be able
deal with multiple concurrent requests from different web
browsers.

2.1. Configuring a Simulation

The LTSA produces an XML document describing the
available transitions each time that a new state is reached.
An XSLT [8] transformation is applied to this XML
document based on an XSL stylesheet. This stylesheet
describes a transformation from XML to HTML which
defines the vis ual appearance of the web pages. This
HTML is then sent over the network via HTTP to the
browser where it is rendered. A separate stylesheet is
written for each application that is simulated, as their
visual appearance and their alphabet of actions will differ.
References to images and all the standard HTML elements
can be included in the XSL. Figure 3 shows a fragment of
XSL which gives the HTML to output when the enterPwd
action is enabled. The figure also shows the result of
rendering this HTML, which includes an image button.

<xsl:when test="name='enterPwd'">
 <input type="text" name="login"/>
 <input type="password" name="passwd"/>
 <input name="{number}" value="Login"
 type="image" src="/enter.jpg" />
</xsl:when>

Figure 3: A fragment of XSL and the rendered

HTML

XSL stylesheets are a standard way of expressing a
transformation from XML to another data representation,
in this case HTML. This technique is itself commonly
used in web and e-commerce applications. Because the
output is standard HTML, we can achieve an interface
which is very close to that that might be used in the final
system.

2.2 Case Study
 To validate these modelling techniques in action and
provide examples of the sort of problems that can occur
with concurrent use of web applications, we applied the
techniques described above to an industrial case study.

This is a model of the eSuite1 e-commerce application that
permits multiple users. The eSuite application has a typical
tiered architecture comprising a web server hosting a Java
servlet for presentation, a business logic layer and an ERP
(Enterprise Resource Planning) system that is effectively
treated as a database. In a previous model [10], a single
user interacted with the system to perform tasks such as
logging in to the system or searching for an order that a
customer had placed. The new multi-user facilities of the
LTSA-MSC tool have allowed us to introduced a new
class of user that interacts with the system, an
administrator who controls the operation of the system.
The examples of Figures 1,2 & 3 are taken from the Case
Study.

5. Conclusions

In summary, we have outlined an approach for
simulating the behaviour of web-applications based on a
model of the system at the architectural level. By
providing a web-based mock-up of the final user interface
for controlling the simulation, both validation against end
user requirements and usability assessments of the
system can be carried out earlier in the design process
than is usually the case. This means that design changes
informed by this usability assessment can be made at this
early stage. By providing a visual representation of the
behaviour models that drive the simulation and a visual
scenario-based language for specifying these models,
design changes can be introduced on the spot, allowing
for an agile incremental elaboration of the system design.
By allowing multi-user simulation we can identify
undesirable system behaviour that is the result of
unexpected user interaction.

The LTS-MSC tool and Web plugin can be fo und at:
http://www.doc.ic.ac.uk/ltsa/

Acknowledgements
We gratefully acknowledge the support of the European
Union under grant STATUS (IST-2001-32298), and the
partners working on the STATUS project.

References
.
[1] Preece, J., Y. Rogers, H. Sharp, D. Benyon, S. Holland, T.

Carey. Human-Computer Interaction. Addison Wesley,
1994.

1 eSuite is a product developed by LogicDIS, one of the
partners in the STATUS project (European Union grant
IST-2001-32298).

[2] Constantine, L.L., L.A.D. Lockwood. Software for Use: A
Practical Guide to the Models and Methods of Usage-
Centered Design. Addison-Wesley, New York, NY, 1999.

[3] Brooks, Jr., F.P., 1995: The Mythical Man-Month: Essays
on Software Engineering, Twentieth Anniversary Edition,
Reading, MA: Addison-Wesley

[4] S. Uchitel, J. Kramer and J. Magee. Negative Scenarios for
Implied Scenario Elicitation, Proceedings of 10th ACM
SIGSOFT International Symposium on the Foundations of
Software Engineering (FSE'02)

[5] Magee J., and J. Kramer, Concurrency – State Models and
Java Programs . John Wiley & Sons, March 1999

[6] S. Uchitel, R. Chatley, J. Kramer and J. Magee. LTSA-
MSC: Tool Support for Behaviour Model Elaboration
Using Implied Scenario, Proceedings of TACAS 2003,
LNCS 2619, p597-602, April 2003.

[7] S. Uchitel, J. Kramer and J. Magee. Synthesis of
Behavioural Models from Scenarios , IEE TSE, Vol 29, No
2, p 99-115, Feb. 2002

[8] J. Clark, “XSL Transformations (XSLT) Version 1.0”,
http://www.w3.org/TR/xslt

 [9] Uchitel, S., J. Kramer, and J. Magee. Detecting Implied
Scenarios in Message Sequence Chart Specifications in
Joint 8th European Software Engineering Conference
(ESEC'01) and 9th ACM SIGSOFT Symposium on the
Foundations of Software Engineering (FSE'01). 2001.
Vienna: ACM Press

[10] R. Chatley, S. Uchitel, J. Kramer and J. Magee, Model-
based Simulation of Web Applications for Usability
Assessment to appear in ICSE 03 workshop "Bridging the
Gaps Between Software Engineering and Human-
Computer Interaction", May 3-4, 2003 in Portland, OR.

[11] ITU, Message Sequence Charts , 1996, International
Telecommunications Union. Telecommunication
Standardisation Sector.

[12] Nielsen J., Designing Web Usability, New Riders
Publishing, Indianapolis, 2000

