
 1

Abstract

A fundamental part of the first year of a computing degree is learning programming. In order to

become good programmers, students need to be able to concentrate on understanding the

problems that they are solving, techniques and algorithms. This can be impeded by the need to

learn the syntax of a complex programming language. Teaching languages provide simple

syntax, but students are often not happy learning a language which they do not see as having

commercial applications.

This report details the design of a teaching language, Kenya, and a translation system for

converting code written in the teaching language into Java code. This gives the progressing

student a stepping stone to Java, whilst letting the beginner concentrate on the principles of

good programming. The report also encompasses the design of a development environment for

writing programs in this language.

 2

 3

Acknowledgements

I would like to thank my supervisor Susan Eisenbach for her continued guidance throughout

this project.

I would like to thank Christopher Anderson for his advice on constructing grammars, compilers

and type checkers.

I would like to thank Ashok Argent-Katwala and Geoffrey Howie for the pertinent (and some

not so pertinent) discussions that we have had over the course of this project.

 4

 5

ABSTRACT ..1

ACKNOWLEDGEMENTS..3

INTRODUCTION AND MOTIVATION..7

THE CURRENT SITUATION..9

THE TURING SYSTEM...9
A JAVA-LIKE TEACHING LANGUAGE ...10

PREVIOUS ATTEMPTS TO SOLVE THIS PROBLEM ..11

THE JMAC SYSTEM..11
BLUEJ..12
JJ ...13

COMPILER COMPILERS..15

LANGUAGE DESIGN..17

ISSUES WITH THE GENERATED JAVA ..29

SOFTWARE DESIGN..31

TRANSLATION..37

PARSING..37
CODE GENERATION ...41

TYPE CHECKING ...47

IMPLEMENTATION OF THE KENYA TYPE CHECKER...49

THE USER INTERFACE..51

EVALUATION ..57

TESTING THE LANGUAGE ..57
TESTING THE DEVELOPMENT ENVIRONMENT..60

CONCLUSIONS..65

FURTHER WORK..69

REFERENCES...71

APPENDIX A - A GRAMMAR FOR KENYA...73

APPENDIX B - SOME EXAMPLE KENYA PROGRAMS AND THEIR TRANSLATIONS
TO JAVA...79

APPENDIX C - MORE COMPLEX EXAMPLE KENYA PROGRAMS AND THEIR
TRANSLATIONS TO JAVA...87

APPENDIX D – A SURVEY OF PEOPLE'S EXPERIENCES OF LEARNING
PROGRAMMING...93

KENYA USER GUIDE...95

 6

 7

Introduction and Motivation

Java[1] is a popular programming language in the computer industry today. Students want to

learn Java, but its syntax is quite complicated for teaching introductory programming courses.

Current methods of teaching introductory programming do not often start with object-oriented

design, but rather concentrate on procedural programming and flow control, moving on to

abstract data types and classes at a later stage. It is not possible to write a program in Java

without writing at least one class (with a main method).

A better language for teaching with is something like Turing[2] which has a much simpler

syntax, and allows programmers to do simple things in simple ways.

The "Hello World" Program in Turing

 put "Hello World!"

The "Hello World" Program in Java

public class HelloWorld
{
 public static void main(String args[])
 {
 System.out.println("Hello World!");
 }
}

Things we have to explain to new programmers to write the Turing program:

1. What put does

2. That strings need to go in double quotes

Things we have to explain to new programmers to write the Java program:

1. What a class is

2. What public means

3. What static means

4. What void means

5. What a method is and how it takes parameters

6. What a library is

 8

7. What the dot operator does

8. What System.out.println() does

9. What curly brackets are for

10. What the semi-colon is for

11. That strings need to go in double quotes

It can be seen from this example that teaching introductory programming concepts is much

easier with a language like Turing, certainly in terms of getting people to the stage where they

can write their first program.

However, Turing is not a useful language in the "real world". People want to learn languages

that they can actually use to write large applications, and put on their CVs. It can be argued that

once the basic principles of good programming have been instilled through an introductory

programming course, it should be easy to learn a second language. However, students often

complain about having to learn with "toy" languages and would rather be learning a "real"

language.

The aim of this project is to design a language which is simple enough to use to teach

introductory programming effectively, but which the development environment will translate

into the Java code which would be written to achieve the same task. The syntax of the language

will be kept simple but will borrow from Java where appropriate. This should allow a

programmer to progress easily onto writing Java at a later stage, whilst allowing them to

concentrate on the principles and structures behind their programs at earlier stages, without

getting bogged down in the overheads presented by writing the program in full Java.

 9

The Current Situation

Currently in the Department of Computing at Imperial College, introductory programming is

taught using a language called Turing[2]. The Department would like to move to a more Java-

like system, to make it easier for students to move on to programming in Java, which is more

applicable to real world problems.

The results of a brief survey of introductory programming techniques at other universities are

included in Appendix D.

The Turing System

The Turing language has a lot of features which make it a good choice for teaching

programming. Unfortunately it is not a language in which commercial software is developed as

it does not tend to be used outside of educational institutions. For this reason, students are often

displeased by having to learn Turing as they do not believe that it will be useful in the long run

and feel that they would be better off learning a language which is more popular in industry,

such as C++ or Java.

If fact, students will be much better off learning the principles of programming using a simple

language. It is far more important that students have a thorough understanding of how to solve

problems and how to construct elegant and efficient algorithms in their programs than to know

the syntax of a certain language. Once the basic principles of good program design and

implementation have been learned, it is easy to take these principles and apply them in different

languages.

Initially, students need to be able to focus on the way that they are solving problems and not on

remembering complex syntax. This is why a less powerful language with a less complicated

syntax, like Turing, makes a good tool for teaching and learning the principles of computer

programming.

The Turing system that is currently used has an Integrated Development Environment (IDE)

which can be used to edit code, to compile it (into a byte code which is then interpreted by a

virtual machine), to execute a program and to step through the execution an instruction at a

time. The ability to step through the execution, and also to examine the contents of variables

 10

during that execution, makes debugging programs much easier as it allows the programmer to

observe the path of control through their programs.

A Java-like Teaching Language

The Turing system has many features which make it a good teaching language, as have been

described above. There is no substitute for learning good techniques and thinking about

structure and algorithms when it comes to learning programming. The use of a teaching

language makes it easier for students to develop these key skills without complex syntax getting

in the way. However, programmers will soon want to move on to a more commercial language.

At the time of writing, the language which is seen as most desirable by employers, and on

which most research and development of software engineering techniques is being based, is

Java. The learning curve in moving from Turing to Java is quite steep, as few pieces of the

syntax are shared, and some of the object-oriented concepts in Java are hard to grasp quickly.

The severity of this learning curve could be reduced if a teaching language was developed

which shared the syntax of Java (or at least followed its general style) for expressing common

constructs. Better than this would be a system which would take code written in a teaching

language, and automatically translate it into the Java code that a Java programmer would write

to complete the same task. This would allow a novice Java programmer to see how constructs

from the teaching language map to Java code. If this could be combined with a good Integrated

Development Environment then this would be a very good tool for teaching introductory

programming with a view to later moving on to Java. The design of such a language and

development environment is the aim of this project.

Naming the Language

All programming languages need a name. The programming language being designed in this

project can serve as an introduction to Java, something to try before hitting the hard stuff.

Taking a coffee analogy, I have chosen the name Kenya for the language, as this is a slightly

milder coffee than Java (see www.starbucks.com).

 11

Previous Attempts to Solve this Problem

The fact that Java is not the easiest or best language for teaching programming has been

recognised by a number of people, and there have already been a few attempts to create

languages and environments to help with this.

The JMac System

A previous student of the Department of Computing at Imperial College worked on such a

system for a project. The result of their work was a system called JMac[4]. The main feature of

JMac is a very nice Integrated Development Environment created using the Java Swing classes.

This IDE is very well designed and it would be hard to find any substantial improvements to

make upon it in terms of usability.

JMac also provides a simple programming language. When a program has been written the

system translates the code into Java, compiles and runs it. However, the translation between

JMac and Java is not as clean as it perhaps could be. For instance, the following is the code for

the "Hello World" program in JMac:

 print("Hello World");

This is fine, and perfectly simple, but asking the system to parse this code and create Java

produces the following code:

/**
 * A JMac Program
 */

class JMacProgram extends JMacLibrary {

 ///////////// Variable Declaration ///////////////

 ///////////// Array Declaration ///////////////

 /** Constructor */
 JMacProgram() {

 ////////////// Program Code //////////////
 print("Hello World");
 }

 12

 ///////////// Method Declaration /////////////

 /** The main entry */
 public static void main(String[] args) {

 /* Creates a new JMacProgram */
 JMacProgram myJMacProgram = new JMacProgram();
 }

 ///////////// Advanced Program Code /////////////

}

It is not at all obvious to an introductory programmer what this does. Consider this program in

terms of the the kinds of concerns previously raised about the problems for an introductory

programmer of understanding some of Java’s complexities: what is a class? What does

extends do? What is a constructor? ...

Even an experienced Java programmer cannot understand from this code alone how the

program works, as no source code is shown for the JMacLibrary class and so it is not known

what functionality this provides. Also, the JMac program is simply quoted verbatim in the Java

program, so it cannot be seen how the same functionality is achieved in Java.

This is not very useful as a step towards learning Java. It would be much better if on parsing the

JMac program some Java code was produced that was equivalent in function to the original

JMac program and was self contained (i.e. it should be the Java code that a programmer would

write if they were trying to solve the same problem in Java as they have just solved using the

simpler language.)

BlueJ

BlueJ[5] is a research project, supported by Sun Microsystems, in the "Blue" group at the

School of Network Computing, Monash University, Australia. The aim of BlueJ is to provide

an easy-to-use teaching environment for the Java language that facilitates its teaching to first

year students. The designers of BlueJ have identified several problems with existing

environments and aim to overcome these.

• A lack of object-or ientation in the environment - BlueJ is designed to teach Java, and

from an object-oriented standpoint from the start. Consequently a prime consideration in

its design was to create an environment which supports and promotes the development of

 13

object-oriented programs. This is different to the aim of the system to be designed in this

project. Here we are starting with a procedural programming approach, rather than an

object-oriented one.

• The environment is under or overkill - Considerable problems are caused by an

environment that provides tools that are too complicated, too minimalistic, or just the

wrong tools.

• The environment focuses on user inter faces - Many environments use graphics to

allow the user to design graphical user interfaces. BlueJ’s environment concentrates on

using graphics to illustrate the class structure of a program, making it easier to

understand.

BlueJ also overcomes two problems associated with teaching Java caused by the language

itself, namely the need to write a main function, and the difficulties with textual input and

output. This project will also address these issues.

JJ

JJ[6] is a programming language and environment designed for learning Java. It was developed

at Caltech by David Epstein and John Motil. JJ is a subset of Java (although it has syntactic

differences), and was designed to offer the ideal syntax for teaching programming to first year

computer science students. The designers had four main goals:

• JJ should be an ideal language for beginners

• JJ should be an introduction to Java

• A language for beginners should be easy to read, close to natural languages and devoid of

unnecessary punctuation

• JJ should not have inheritance

JJ is an introduction to Java, and shares with this project the technique of translation from the

teaching language to Java. The translation is done line by line, one line of JJ translating to one

line of Java. However, although JJ is supposed to be a subset of Java, most of the keywords,

and some of the syntax, are substantially different. For instance, the designers decided to apply

a "command word rule" to the language design. This rule states that every command begins

with a reserved keyword. There are no semicolons, each command must be on a separate line.

There are no curly brackets. Multiline constructs are defined using If and EndIf, Class and

 14

EndClass Routine and EndRoutine etc. The way in which code is indented is also

important, as corresponding If and EndIf pairs must be aligned to the same column. JJ’s

designers have expressed the opinion that students find the word "variable" confusing, and so

have used the word "box" in its place. Variable declarations are a case where JJ’s syntax is

substantially different to Java. JJ uses:

 Box name ofType type

where Java would have:

 type name;

Although I agree with the technique of translating a simple language into a more complex one

as an aid to teaching, and will pursue this route in developing a teaching tool in this project, I

believe that the weaknesses in JJ are in the dissimilarities between the JJ language and Java.

During the time spent working with a language, certain things become ingrained, for instance

the use of a certain character (e.g. a semicolon) as a line separator, or the order of the terms in a

variable declaration. If a smooth transition between languages is to be ensured then, in my

opinion, it would be more sensible to keep a common syntax and style between the two where

this will not introduce overly complex constructs. I also think that the need for the student to

learn a whole new set of keywords when making the transition will present a barrier to moving

easily to Java.

JJ enforces a certain style of indenting. The way that code is laid out is very personal to

individual programmers (although perhaps more of an issue to the more experienced

programmer) and being forced to use a certain layout may prevent them from thinking about

the problem as clearly as they might if it were possible to lay out their code with whatever

spacing they wished.

 15

Compiler Compilers

Parser Generation

Computer programs written in high or medium level languages are most often represented as

strings of characters in text files. It is not possible for software to process raw sets of characters

without some knowledge of what various combinations of characters forming keywords,

identifiers etc (known as "tokens"), mean in terms of the language in which the program has

been written. In order to do anything useful with the contents of these files, the characters need

to be analysed and built into some abstract representation of the program, describing its

structure, which can be processed[7][8]. Often this abstract representation is translated into

some differing textual representation, e.g. the conversion from C source code to binary object

code, or from Java source code to Java byte code.

Parsing involves grouping the tokens of a source program into grammatical phrases. The parser

takes as an input the textual representation of the source program and constructs from it an

abstract hierarchical representation of the same program, usually in the form of a tree. There are

two stages to this conversion. The first is lexical analysis, which takes a stream of input

characters from the textual representation of the program and converts them into a stream of

tokens. The second stage is syntax analysis, where a parse tree is built from the stream of

tokens which represents the program. This tree can be processed by further stages either to

perform semantic analysis, for instance to check the correctness of the program, or to generate

code (either machine code for a specific architecture in the case of a compiler, or source code

for another high level language in the case of a translator).

As the translation from text to an abstract program representation is a problem which has been

encountered many times before, it is now well understood how to construct programs to parse

text into meaningful words and symbols and form so called Abstract Syntax Trees (AST’s)

representing the program. In fact, this problem is so common that software has been developed

which will automatically generate a program to parse a text file into an AST, given a

description of the language. Such software is called a "parser generator", or less accurately, a

"compiler compiler". The description of the language to be parsed is usually given in the form

of a "grammar", which defines what constructs (or "productions") can be used in the language,

and what tokens comprise these.

 16

There are many different parser generators available, some of which are described in the

following paragraphs.

Lex and Yacc

Lex and Yacc[9] are fairly old UNIX programs. They split the parsing problem into two parts,

Lex is essentially a lexical analyser (or "lexer"). It splits the source file into tokens. Yacc (Yet

Another Compiler Compiler) finds the hierarchical structure of the program. The Yacc user

specifies the structure of his input, together with code to be invoked as each such structure is

recognised.

ANTLR

ANTLR[10] (Another Tool for Language Recognition) was written by Terence Parr who

previously wrote PCCTS[11], but where PCCTS generates parsers written in the C language,

ANTLR produces parsers written in Java or C++.

SableCC

SableCC[12] is another parser generator which produces Java code. An advantage of SableCC

is that the code which it generates uses the Visitor Pattern[13]. This means that a new operation

to be carried out on the AST can be added, without changing the classes belonging to the AST,

by simply writing a new class containing methods which can be applied to each node in the

AST. An instance of this class is then passed to each node’s apply() method.

The parser is generated from a grammar for the language, given as a text file. The grammar

defines the tokens and productions used in the language which need to be recognised.

SableCC has been used in this project because its use of the Visitor pattern gives an elegant

design to the software to process the abstract syntax tree, and because it produces Java code,

which is platform independent.

 17

Language Design

The main concerns in the design of the language are:

• It should have a syntax which is easy to understand, remember and write.

• It should not be necessary to define a main function in a program.

• It should not be necessary to create classes or objects to write simple programs.

• The syntax of Java should be used where it seems suitably simple, so that the learner can

see how to write the same programs in Java when they want to learn a new language.

• Enough suitable keywords and structures should be included to allow the language to

have sufficient functionality for it to be used to solve all of the problems which might be

set as an introductory programming exercise.

Data Types

It makes sense to share the concrete data types of Java so that no type conversion has to be

done at the translation or compilation stage. The basic types supplied by Java are:

• boolean

• char

• byte

• short

• int

• long

• float

• double

Are all of these needed? It is probably not necessary to have all of these when writing

introductory programs. The difference between a float and a double, or a short and a

long is unlikely to be something that an introductory programmer should need to understand.

It would be useful to have a string type. Strings in Java are not basic types but objects. This can

probably be made transparent to the introductory programmer.

 18

A more suitable set of basic types might be:

• boolean

• char

• int

• real

• string

The term real has been used instead of double. It is necessary to have a floating point data

type, but over complicated to have more than one at different precisions. A double is more

flexible than a float, so it makes sense to use a double if only one of the two types is going

to be included. It would be confusing to use the word float to represent this, as it would get

translated to a Java double rather than a Java float. However, it does not seem sensible to

call it double if there are no other floating point precisions available. This will only lead to

the question "What is a single?". Calling the type real seems a good solution. An introductory

programmer is much more likely to be familiar with the concept of a real number than a double

precision floating point number.

Should string have a capital letter? In the introductory language a string is presented as a

basic type. None of the other basic types have capital letters. In Java, String is a class, not a

basic type, and classes start with capital letters (String). If string is left uncapitalised then

it may be confusing when moving to Java. If it is capitalised, it will be incongruous, and require

a complex explanation as to why it is that way. At the current time, I am of the opinion that

string should not be capitalised.

Variables and Constants

In Java variables are declared like this:

int a;
int b = 100;

This seems good and simple, and will be used in the introductory language. The use of the

semi-colon as a statement separator will be considered later.

 19

In Java constants are declared like this:

{ public } static final int a = 100;

This seems complicated and difficult to explain. In the introductory language a const

keyword will be provided, which will map to static final in the translation to Java.

const int a = 100

Records and User Defined Types

Records (structures containing a set of other types) e.g. a Point containing an x and a y co-

ordinate, both of a basic type, are useful. In Java this would be a class.

A large part of programming and software engineering is about finding a good abstraction

model. Writing a program to fit this model is helped a lot by the provision for user defined

Abstract Data Types. These are again implemented using classes in Java.

A point class in Java:

class Point
{
 int x;
 int y;
}

In Java, the contents of the record (object) are accessed in the following way, assuming p is a

Point:

p.x = 4;
p.y = 3;

This method of defining a class (using a class keyword), and the use of the dot operator to

access member variables, is fairly simple and widely used across a variety of languages, so it

seems a good idea to keep these for the teaching language. The use of curly brackets to delimit

the class definition seems an acceptable approach. Taking this approach here suggests using

curly brackets for delimiting all blocks of statements (loops ...) as they are used in Java.

In C or C++ there is provision to provide a new name for a type. For instance the name "age"

could be assigned as a synonym for "int". This is done using a typedef. Although this helps

 20

with modelling a problem, there is no provision for using typedefs in Java. It would be difficult

to write code in Java which a typedef would map to, so unfortunately it will not be included

in the introductory language at the moment.

Declaring Variables of User Defined Types

In Java, objects (instances of classes) are created using the new operator, in the following way.

Point p = new Point();
p.x = 2;

This creates an object on the heap, assigning memory dynamically at runtime. In C++ objects

can be created on the heap in the same way, or they can be created on the stack in the following

way:

Point p;
p.x = 2;

This uses the same syntax as declaring a variable of a basic type. As the introductory

programmer should not need to know the difference between creating an object on the heap and

creating it on the stack, it seems sensible to use the C++ stack creation syntax for the creation

of variables of all types. The differences between basic and non basic types are thus made as

transparent as possible to the programmer, who can use them in the same way. As objects

cannot be created on the stack in Java, a declaration such as Point p would have to be

converted to Point p = new Point() by the translator.

Arrays

Arrays are fairly fundamental data structures. They are usually referenced by an identifier and

an index. For instance in C or Java, a number (or expression) is used in square brackets after the

identifier, e.g.

numbers[4] = 12;

This seems a fairly straightforward notation. In Turing, a similar syntax is used, but with round

brackets instead of square. To preserve consistency with Java, square brackets will be used.

 21

 In Java, arrays are objects, and need to be created using the new operator, e.g.

int numbers[] = new int[12];

String names[];
names = new String[12];

In the introductory language, arrays will be declared without this, in a C style:

int numbers[12];

and converted to the correct Java by the translator.

Statement Separators

To determine where one statement ends and another begins, some sort of delimiter is needed. It

would be possible to use a newline for this, putting each statement on a different line. However,

it is quite often desirable to change the layout of the program code to make it easier to read and

show its structure more clearly. Using newlines to define new statements makes this difficult.

Adding white space may cause a working program not to function. An alternative, as used in C,

C++ and Java, is to use a semicolon (or some other special character) to separate statements.

This allows arbitrary newlines to be inserted without affecting the function of the program,

although it does mean that an extra character has to be added after each statement, and this does

not look as tidy as it would without. The fact that Java uses a semicolon as its statement

separator swings the decision to use a semicolon in the teaching language also. It is often the

case that a lot of compiler errors in Java, and even more in C/C++, are caused by the

programmer forgetting a semicolon at the end of a line. If the programmer gets into the habit of

putting semicolons in right from the start then this may be reduced.

 22

Conditionals

Conditionals are a fundamental part of any programming language. The most useful and

generic construct is if .. then .. else. The Java syntax for this seems straightforward enough to

include in a language for teaching, so the following syntax will be used:

if (condition - a boolean expression)
{
 statements ...
}
else
{
 statements ...
}

Case

Case is a useful construct to prevent programmers having to write:

if (a == 1) { statements }
if (a == 2) { statements }
if (a == 3) { statements }
if (a == 4) { statements }

In Java the case construct is called switch and has the following syntax:

switch (a)
{
 case 1 :
 text = "first case";
 break;
 case 2 :
 text = "second case";
 break;
 case default :
 text = "no other cases match";
 break;
}

If a does not match any of the cases, the default case is selected. The break statements are

used to stop execution at the end of each case and jump to the closing curly bracket. If the

break statement was not included at the end of case 1, and case 1 was matched, after case 1’s

statements had been executed, case 2’s statements would also be executed, and so on until a

break statement was reached. Some programmers find it an annoyance to have to include a

 23

break at the end of each of their cases, but it does allow for the possibility of leaving them out

on purpose in order to let the execution drop through to the next case. In order not to prevent

programmers from using this technique if they want to, it will be left to the programmer to put

in the break statements rather than having the translator put them in automatically.

Loops

There are four common types of loops: while loops, repeat .. until loops, generalised loops and

for loops. The first two are quite similar. With while the test for exiting the loop is done at the

top (so the body of the loop may not be executed) and with repeat .. until the test is done at the

end, so the body is always executed at least once. The Turing programming language provides

a generalised loop in which the programmer can put the exit condition at the top or the bottom

(or anywhere in the middle!) to determine the way in which the loop works. Most repeat .. until

loops can be rewritten as while loops, so to aid consistency only a while will be provided.

while (condition - boolean expression)
{
 statements
}

The other sort of loop to be considered is the for loop. This gives a number of iterations using

an index variable. For example for i from 1 to 10 or for i from 10 to 1. The

syntax for this in Java is:

for (i = 1 ; i <= 10 ; i++)
{
 statements
}

This provides maximum flexibility from one construct without increasing complexity to do

more sophisticated things (e.g. increment in different steps or have complex loop termination

conditions).

Turing takes a slightly less sophisticated approach, using:

for i : 0 .. 9
 put i
end for

 24

The Java approach provides much more flexibility, but the Turing syntax is far simpler. It is a

difficult decision which of these is the more important consideration. I would argue for

simplicity, consistent with all of the features of this new language, but at the same time it would

be easy to make the language too restrictive, therefore not allowing more sophisticated

programs to be written. While the language should be kept simple, it is also important that a

large number of problems can be solved and techniques applied using it. My proposed syntax

for the Kenya for loop is as follows:

for i = 0 to 9
{
 print i;
}

or

for decreasing i = 9 to 0 step 2
{
 print i;
}

The second case gives a loop counter which is decremented by 2 at each iteration of the loop.

It may be possible to allow both this format and the Java style format of the loop in order to let

the programmer (or the teacher) choose which they feel is more useful or applicable in a certain

case.

Procedures and Functions

Java calls procedures and functions "methods". Procedures are just functions which do not

return a value (they return "void"). All methods are members of classes. Unless a method is

declared static, it can only be called if an object of the class of which it is a member has

been created. As at the current time the introductory language will not support object-oriented

programming, all methods should be members of the class in which main is defined, and be

declared static with package access, so that they can be called from any part of the program.

Input and Output

Textual output in Java, on the console at least, is most easily achieved by using the library

functions System.out.println() and System.out.print() to print a line of text

 25

(with a newline at the end in the case of println()). To hide the library, the teaching

language will provide functions print and println() which will translate to calls of

System.out.print() and System.out.println() respectively in the Java.

Doing console input in Java is not simple. The cleanest way found to read say an integer from

the keyboard into an integer variable is to do something like the following.

try {
 java.io.BufferedReader stdin =
 new java.io.BufferedReader(
 new java.io.InputStreamReader(System.in));

 String line = stdin.readLine();
 int i = Integer.parseInt(line);
 }
catch (java.io.IOException e) { System.out.println(e); }
catch (NumberFormatException e){ System.out.println(e); }

At the moment I think that the best way to deal with input is to provide functions with names

like readInt() and readString(). If the user includes these in their program, a function

wrapping code similar to the above will be included in the Java source code, and called at the

relevant point. Another option would be to have a generic read() function which would

translate to different Java functions depending on the type of the variable to which the result of

the read() is being assigned. This is more complex to implement.

I/O will be interactive, but graphics will not be provided as these are not really a fundamental

concept in programming, and tend to be highly platform and language dependent.

Operators

The following operators will be provided:

• =

• +

• -

• /

• *

• ^

• ==

 26

• !=

• <

• >

• <=

• >=

• and

• or

• not

Generics

Generics[14] are a sophisticated concept. Java is an object-oriented language and (almost)

everything is an object (i.e. it extends the class Object). When programs deal with large

numbers of objects, they tend to hold them in various kinds of containers (like Vectors,

HashMaps etc). Any sort of object can be put into a container and got out again later. However,

if you put in say a Dog, where Dog is a class that you or someone else has defined, and try to

get it out again, you get out an Object. This is because containers hold Objects. They do not

remember the more explicit type of each Object put into the container, and so they can only

give an Object back. It is up to the programmer to remember the type of the objects they put

into the container, and convert them back to this type using a cast.

In Java this looks like:

Vector v = new Vector();
Dog d = new Dog();
v.add(d);

Dog e;
e = (Dog)v.elementAt(0);

The cast is the bracketed (Dog) after the assignment operator on the last line. This coerces the

Object which comes out of the vector to a Dog, so that it can be assigned to e.

It is somewhat annoying for the programmer to have to remember the type of the objects in a

container and cast them whenever they are extracted. A solution to this problem would be to

have a class called DogVector which only contained Dogs. We could then be sure that any

object extracted from a DogVector would be a Dog and therefore no cast would be necessary.

 27

However, there will be other types of objects that programmers will want to store in vectors as

well as Dogs (in fact anything that is an Object) and using this approach a different class would

have to be written for each container for each type of object to be contained. Every time a

programmer defined a new type they would have to define a new set of containers to put them

in.

Generics offer a solution to this problem by providing the possibility of having containers that

are parameterised by type. That is, we can say we want a Vector < A > . This means we want a

Vector, but that everything it contains will be of type A (where A could be Dog, Date, String

...) . The parameterised container then deals with any type coercion necessary.

C++ offers generics in the form of templates. At the moment[15] Java does not have generics,

but compilers are available which will compile a superset of Java, including parameterised

types. GJ (Generic Java)[16] is such a compiler. It would not be difficult to produce GJ code as

the translation from Kenya rather than Java (GJ is a superset of Java, so the code would be pure

Java if generics were not used in the Kenya code). This would allow programmers to use the

feature, removing much of the need for casting, one of the less elegant features of Java.

The use of parameterised types is quite an advanced concept, and it is questionable whether

they should be included in a teaching language. However, I think that they should be included

as the novice can choose not to use them. When they do come to work with containers, the

concept of the parameterised type can be explained just as easily as the need to cast objects

when they are extracted from containers.

 28

 29

Issues with the Generated Java

The software developed in this project will translate the Kenya code written by the programmer

into Java so that it can be compiled and run. (In fact, in order to allow generics as detailed in

the previous section, the code produced will actually be GJ, not Java, but as GJ is a superset of

Java, I shall use the term Java to describe the code produced unless specifically talking about

generics.)

Qualities of the Code

The main objective for the Java was that it should be as near as possible to the code that a Java

programmer would write from scratch to solve a problem. Often generated code is very

obviously generated. It is often more verbose and less elegant than code written by a human. I

wanted to make sure that the code generated from Kenya is clear and simple, so that it is as

easy as possible for the novice programmer to understand what the Java does, whilst providing

a good example of how to write good Java code.

I also wanted to show exactly what code was necessary. A different approach would have been

to provide a lot of library code which could be called, allowing the generated code to be kept

small. However, I wanted to avoid providing "black box" functionality hiding the

implementation from the user. The idea is to allow the programmer to see how things work so

that they can do them for themselves.

Going against this is the fact that there is a Java paradigm of code re-use. Once you have

written code to do something once, you do not write it again, but import it from the previous

project. This points towards the use of library code. A compromise needed to be reached.

Library Routines

I have decided to provide the routines for getting input into a program (reading numbers and

strings from the keyboard) in a library. Doing input in Java is not simple. The simplest code to

read an integer that I can come up with is still quite complex (see the language design section).

 30

The code could be wrapped in a function:

static int read()
{
 try {
 java.io.BufferedReader stdin = new
java.io.BufferedReader(new
java.io.InputStreamReader(System.in));
 String line = stdin.readLine();
 return Integer.parseInt(line);
 }

 catch (java.io.IOException e) { System.out.println(e); }
 catch (NumberFormatException e) { System.out.println(e); }

 return 0;
}

A different function is required for each type of data to be read. A Java programmer would

probably write a wrapper class called something like IntReader with a static method read() or

they would write a Reader class which contained several methods: readInt(), readReal() etc.

They would then use this class in any program that they wrote in future, using an import

statement to include the class, or just by putting a copy of it in the same package.

I have decided to write separate classes IntReader, DoubleReader and StrReader which are in a

package called kenya.io . The use of the readInt(), readReal() or readStr() functions in a Kenya

program causes the relevant class (or the whole package) to be imported into the generated Java

program.

 31

Software Design

The software designed in this project takes a Kenya program and processes it in several ways. It

builds an abstract representation of the program which can be checked for correctness and

translated to Java code to be compiled and run. The details of the different stages of processing

are given in the following sections. This section describes the overall structure of the system

and how the different parts fit together.

The flow of information through the system is shown in the figure on the next page. A textual

representation of the Kenya source code is typed in by the user. This is transformed into an

abstract syntax tree by a lexical analyser and a parser. The tree is processed by a type checker

to ensure correctness of the program, and by a translator to produce Java source code. The Java

source code is then saved in a file in a directory and the compiler is run to produce a class file.

In order to provide platform independence, the software developed in this project has been

written in Java. The diagrams on the following pages show some of the more important classes

and how they are linked together. All of the different functional parts of the system are linked

together by the user interface. The rationale behind the design of the user interface is described

in another section. The user can enter code into the text areas and invoke other functions by

pressing the buttons on the toolbar. Each JButton has an ActionListener which listens for

mouse clicks and then calls appropriate routines to parse the code, compile it, open a file etc.

 32

int a;

... Lexer Parser

Translator

Vector

CodeLines

...

public class

File

Directory

Error Messages

Class Files

Process

GJ Compiler

...

public class

Error Messages

Type Checker

Information flow through the Kenya system

 33

JButton

JavaArea KenyaArea MsgsArea

Kenya

KenyaUI

Lexer

ParseListener

KenyaToolbar

ActionListener
<< Interface >>ActionListener

Parser

*

The overall structure of the user interface

 34

When the ParseListener detects a mouse click on the "parse" button it creates a parser and a

lexical analyser to construct an abstract syntax tree from the text in the KenyaArea. The tree is

formed from instances of subclasses of the class Node. A TypeChecker object is then created

and applied to the tree. The type checker maintains a set of known types and a symbol table

mapping names to types.

HashSet

KnownTypes

SymbolTable

TypeCheckerParseListenerNode

apply()

1

*

1

*

DepthFirstAdapter

The classes related to the type checker

 35

After the correctness of the program has been checked, a Translator object is created and used

to process the tree to produce Java code. The translator adds each line of code that it generates

to a Vector. Later the ParseListener can access the code using the translator’s getCode()

method. It writes each line of Java code into the JavaArea.

ParseListenerNode

apply()

1

*

DepthFirstAdapter

Translator

getCode()

Vector code

The classes related to the translator

Compiling the code causes the system create a directory and write the contents of the JavaArea

into a file. The compiler is then invoked in an external process and produces class files.

 36

When executing a compiled program, the system again runs it in a separate process but

connects to the standard input and output streams for this process. This is so that output from

the program can be piped into a window inside the Kenya user interface, and input from the

user can be fed back to the process to allow interactive programs to be written and tested.

InputBox OutputArea

OutputWindow

SwingWorker

ExecuteListener Process

STREAM

STREAM

The classes related to executing a compiled program

 37

Translation

A large part of the work in developing the Kenya system was developing a way to translate

Kenya code into Java code. Although this is a mechanical translation, I wanted the Java code

that was produced to look as "human generated" as possible. It should be as close as possible to

the code that a human programmer would write to solve the problem in Java.

There should perhaps be a caveat here. Java is an object-oriented language, and the way in

which "good" (or certainly large) programs are written in Java normally makes much use of

this. Kenya is not an object-oriented language. There is provision for defining classes and

creating instances of these classes, but there is no inheritance, and therefore no type

polymorphism. (As it happens, this is the same as Visual Basic, which Microsoft claims is

object-oriented, but I would argue against this). It is suggested that novice programmers should

not be introduced immediately to the object-oriented programming paradigm, but that they

should begin with a more traditional, structured approach. Because of this, the Kenya system

will generate the Java code that a programmer would write to solve a problem if they were

approaching it in a structured way, rather than an object-oriented way. There is not a

straightforward mapping between a structured program and an object-oriented program to solve

the same problem, as they are two different ways of thinking about solving the problem. This

makes the task of writing a mechanical translator from structured code to object-oriented code

extremely difficult. It also means that, were such a translation achievable, a novice programmer

looking at the generated code would not easily be able to see, based on the way that they had

been thinking about the problem, how the Java code worked.

To carry out the translation, first the text representing the Kenya program must be processed to

form an abstract representation. Then the abstract representation can be processed, generating

the relevant Java code from each construct and expression in the program.

Parsing

The parser for Kenya was generated using SableCC[12], as it outputs Java code which is easy

to incorporate with the rest of the code for the project. Also, the use of the Visitor pattern

allows for easy extension of the functionality defined over the AST without having to modify

any of the generated code by hand, and also leads to an elegant solution.

 38

Writing the Grammar

A grammar for SableCC is written using Extended Bachus Naur Form (EBNF)[17]. The

grammar has the following sections (examples are given of the sorts of definition which might

appear in each section):

Helpers
 digit = [’0’..’9’];

Tokens
 minus = ’-’;
 plus = ’+’;
 blank = ’ ’;
 number = digit+;

Ignored Tokens
 blank;

Productions

 expression =
 {plus} expression plus number |
 {minus} expression minus number |
 {number} number;

Each of the constructs with an equals sign in the middle defines the name on the left hand side

to represent whatever is on the right hand side. In the case of digit, this is the set of digits 0

to 9. The tokens give a name to each of the characters which may appear in the program source.

Operators such as + can be used, as in the case of number. The use of + says that a number is

a sequence of one or more digits.

Productions represent the way in which tokens can be combined to write programs. They can be

defined recursively as shown in the example. There are several alternatives for what an

expression may be. It may either be a number or an expression to which a number is added or

subtracted.

Once a grammar has been written, SableCC will try to generate a lexical analyser and a parser

for the language. Quite often during the writing of a grammar SableCC will report that it cannot

generate a parser as it cannot resolve precisely which production a set of tokens represents. This

is a shift/reduce or reduce/reduce error and is caused by an ambiguity in the grammar.

 39

SableCC produces a so-called "bottom up parser". This means that the parser continues from

left to right along a stream of tokens, pushing the tokens on to a stack. At each stage it tries to

determine whether the elements at the top of the stack represent an entire production, or

whether more tokens need to be examined in order to make an unequivocal decision as to what

the string of tokens represents. If the top elements of the stack do represent a production, those

elements are "reduced" exchanging the set of tokens for a symbol representing the production

as a whole. If there is not yet enough information to make a decision then the next token in the

stream is "shifted" on to the top of the stack and the process continues.

If at any point the parser is in a situation where it has multiple options and cannot make a

decision based only on the contents of the stack and the next token, then there is a "shift/reduce

conflict" (if the parser is unsure whether to shift or reduce) or a "reduce/reduce conflict" (if

there are several possible reductions which could be made). See the Dragon book[8] for more

details on bottom up parsing techniques.

When SableCC generates a parser, it checks whether either of these conflicts can arise. If they

can then it will not complete the generation of the parser. The productions in the grammar must

be rewritten until the parser will no longer be able to enter such a conflict state. Such conflicts

are generally very frustrating and not straightforward to remove or prevent. A great deal of time

was spent during this project working on the grammar to remove conflicts.

Analysis

SableCC takes a grammar definition and produces from it a Node class and a set of subclasses

of it which represent each of the operators and constructs which can appear at each of the nodes

in the syntax tree. It produces a lexical analyser and a parser which together process the textual

representation of the source code to produce this tree. Everything which is a Node has a method

with the signature public void apply(Object o). This allows visitor objects to be

passed to each node to perform a particular type of analysis or processing on them.

SableCC generates a class called DepthFirstAdapter which will perform a depth first traversal

of the parse tree, without performing any operations on the nodes as it goes. This class can be

extended and its methods overridden to process the tree.

 40

The methods in DepthFirstAdapter have a signature of the following form:

 public void caseAVariableDeclaration(AVariableDeclaration node)
{
 // do something
}

AVariableDeclaration is a subclass of Node. There is a caseXY method corresponding to each

type of node which may be encountered during the traversal of the tree. The relevant case

method is called depending on the type of the Node to which the DepthFirstAdapter is passed.

Most Nodes in the tree will have children. What children they have depends on the grammar.

For example, the grammar might contain the following definition:

variable_declaration = type identifier initialiser? semicolon;

Here we can expect a node of type AVariableDeclaration to have children representing exactly

one type, one identifier, zero or one initialisers and a semicolon. This might be processed in the

following way:

public void caseAVariableDeclaration(AVariableDeclaration node)
{
 addToSymbolTable(node.getIdentifier() , node.getType());

 if (node.getInitialiser() != null) {
 node.getInitialiser().apply(this);
 }

 // control returns here after the tree representing
 // the initaliser has been processed
}

Here we see that get methods are provided for all the possible children of the node. In the case

of the initialiser, as it is optional, a test is done to see if there is one. If there is, the visitor is

passed on to process the tree representing the initialiser (an initaliser will probably consist of at

least an assignment operator and an expression, which may in itself be a complicated set of

nodes) by calling the node’s apply() method and passing it the DepthFirstAdapter. (i.e.

this.) Programmers unfamiliar with the Visitor pattern may find it slightly counterintuitive

that the this reference refers to the DepthFirstAdapter rather than the Node that is being

processed. After the tree representing the initialiser has been processed, the flow of control

 41

returns to this node, as indicated by the comment in the code fragment above, showing that the

tree is processed recursively.

Code Generation

Once the abstract syntax tree has been generated, it can be processed by the code generator to

produce equivalent code in a different language, in this case Java (with GJ extensions, see the

language design section).

The main difference between a Kenya program and a Java program is that a Kenya program

comprises a list of statements, whereas a Java program consists of a set of class definitions, and

has the following structure:

• A program consists of a set of class definitions

• A class definition consists of a list of attribute declarations and a list of method

definitions

• A method definition will contain a list of statements

One of the methods defined must be called main. This is the point of entry into the program. In

Kenya, the point of entry is simply the top of the program.

The main issues of concern when generating Java code from a Kenya program are therefore:

• To create at least one class

• To insert the code for the main program operation into the main method of this class

Other pertinent issues are:

• To create methods relating to any functions defined in the Kenya program

• To create Java classes relating to any classes defined in the Kenya program

• To add any necessary import statements to allow access to code necessary for the

correct compilation of the Java

• To generate a correct translation of all statements

 42

Style

One of the most difficult things to decide was how to write Java code in the style of a human.

Different people have different coding styles, and there is no one "best" style. Style is

concerned both the way that constructs are defined and combined, and with the layout of

keywords on the screen (i.e. what the code looks like).

In a procedural language, a constant would be declared just like any other variable (possibly at

the top of the file). A Java programmer is more likely to define their constants as being

static final members of the class which they are writing. If a direct, line by line

translation was made from Kenya to Java then constants would be defined in the body of the

main method. The Java code would still compile, but it would not be a good example of how to

write Java programs. To avoid this, in the Kenya implementation all of the constant

declarations are pulled out of a Kenya program and defined as attributes of the class.

In terms of layout, a consistent layout was used, always starting blocks with the curly bracket

on a new line after an if or a class keyword. In terms of the way in which the program itself

is structured, this is largely going to be due to the way in which the user has solved their

problem. However, there are a few Java idioms which can be applied when generating the Java

code.

The placement of different elements within a Java program is also a matter of style. In the

generated code the following pattern is followed:

class Classname {

 constants

 main method

 other methods
}

class Record
{
 attributes
}

Kenya classes are just records and so cannot have methods included in them, hence the class

Record above has only attributes.

 43

Having an order for generating the code for different elements which is not necessarily the

same as the order in which they are defined in the Kenya program means that the nodes of the

abstract syntax tree cannot simply be processed in order. Account must be taken of what the

nodes represent and the tree must be rearranged to meet the required structure.

Implementing the Translator

The translator was implemented by writing a visitor which could be passed to the apply()

method of each node of the syntax tree produced by the parser. The class Translator extends the

class DepthFirstAdapter created by SableCC. The DepthFirstAdapter performs a depth first

traversal of the tree, doing nothing to the nodes as it walks over them. By extending this class

and overriding its methods, a visitor was created which traverses the tree and generates the Java

code relevant to each node.

Initially the approach taken was to simply generate the code

public class Program
{
 public static void main (String[] args)
 {

and then traverse the tree, generating the code for each statement and appending it to the

program. When the traversal was complete, the program was completed by closing the method

and the class

 }
}

I decided to call the main class Program in all cases. Class names are generally decided by the

purpose of the code being written. It is not possible for a machine to infer from the Kenya code

what the intent of the program is and summarise it with a suitable name, so I decided to stick

with Program.

Function Definitions

For simple programs the above approach works well. However, when a function is defined in

the Kenya program, its definition cannot simply be written out in the flow of the Java code.

Doing this would put one method definition nested inside another. Java does not allow this as

all methods have to be members of a class, even if they are static and can therefore be called

 44

without creating an instance of the class. The code which needs to be generated is of the

following form:

public class Program
{
 public static void main (String[] args)
 {
 statements
 }

 static void doSomething()
 {
 statements
 }
}

To achieve this, whenever a function definition is encountered, instead of continuing down that

branch of the tree and generating the code for the method definition, the branch is copied into a

list of function definitions, and the code generator moves on to deal with the next branch of the

tree. At the end, the main is closed, but before the class definition is closed, the translator

object processes each function definition which has been accumulated in the list individually.

All the methods for which code is generated are declared to be static, as an object of type

Program will never be created. However, only main is declared as being public, as it is the

only method which will be called from outside the package (by the Java Virtual Machine when

the program is invoked). All other methods will be called from inside the same class, or the

same package, and so can (and should) be left "friendly", without an access modifier.

Class Definititions

A similar issue to that raised by function definitions is raised by class definitions. In Java it is

permitted to nest one class definition inside another, producing a so-called "inner class".

However, it seems clearer (to me at least) to have all classes defined at the same level. There

are situations in which inner classes are useful. These concern callbacks and cases in which

multiple implementation inheritance is required (see ch 8 of Eckel[18] for a discussion of these)

but these issues are far more complicated than anything that should concern an introductory

programmer and I feel that the use of inner classes should be reserved for these more

sophisticated uses, as they are not required in solving more everyday problems. To achieve this,

 45

class declarations are added to a seperate list, and the code generator applied to them at the end,

as is the case with function definitions.

Java programmers often define each class in a separate file. The compiler insists that all public

classes are defined in their own file, and that the file is named after the class. Programmers

often take this to mean that all classes should be put in their own file. This is also caused by

programmers making any class that is not private, public. The public modifier is only necessary

when a class needs to be accessed by a class in a different package. Any classes that are only

accessed by classes in the same package (the majority of cases) can be defined as "friendly",

with no access modifer, and can be defined in the same file. It is my belief that, particularly for

simple classes, it makes much more sense to include several classes in a file. This saves having

to constantly switch between files or have multiple editor windows open, and allows the whole

program to be seen at once. I believe this is valuable when trying to learn how a program

works.

Class Names

As mentioned above, each translation of a Kenya program to Java produces a public class

called Program. In order for the Java compiler to process this class, it must be saved in a file

called Program.java. This only becomes a problem when the user gets to the stage where they

want to work with the Java. They will end up with multiple files all called Program.java. If they

change the name then the file will not compile, but if they do not change the name then they

cannot keep the files in the same directory.

The user could change the name of the class to something other than Program and change the

name of the file accordingly, but even if they do this there may be other problems. When a Java

program is compiled, a .class file is produced for each class that has been defined. If two Kenya

programs are written which each define a class Dog, these will translate to two Java programs

which each define a class Dog. The user can change the name of the main class from Program

to something else so that they can keep the two programs in the same directory for

convenience. However, when they compile one of the programs using the Java compiler, this

will create a file called Dog.class which will overwrite any Dog.class files produced by

previous compilation of the other program. This will cause the first program to execute

incorrectly unless the definitions of the Dog class in both programs were the same.

 46

These difficulties can be overcome by using Java’s package system. By defining a package

corresponding to each Kenya program that is written, all the .java and .class files generated

from that Kenya program can be put in the same package. In the filesystem this is implemented

by creating a directory, so it does not allow multiple Program.java’s in the same directory, but it

does provide a neat organisation, and certainly avoids the conflicts indicated by the Dog

example above. The best way to get a sensible package name before creating the directory is to

ask the user to provide one. A package statement needs to be added to the top of the Java

program to indicate which package the class is in.

Input

Kenya provides the facility for obtaining input in programs by providing the functions

readInt(), readReal() and readString(). These translate to somewhat complex

functions in Java, as can be seen in the language design section. Although in general in

designing the Kenya system it has been my principle to present the user with all the code

necessary to achieve the same functionality in Java, in this case I have decided to place the

functions into library classes and import them into the namespace. This does not go against the

principle of generating the code that a human Java programmer would write, as a human

programmer would not rewrite classes that they had written before, but would reuse the code,

importing it from another package. The code for the input routines will be supplied in the

language reference for those who wish to know how they were written.

As the translator traverses the syntax tree, every time it comes across a call to an input function

it adds an entry to a set. If only one type of input has been used, (e.g. just readInt()), that

class is imported explicitly by placing the following command at the top of the program.

import kenya.io.intReader;

If more than one type of input has been used then the whole of the kenya.io package is

imported into the namespace instead using the command

import kenya.io.*;

 47

Type Checking

If a purely mechanical translation from Kenya to Java is carried out, and the resulting Java code

presented to the Java compiler, any mistakes in the Kenya code will be echoed or amplified in

the Java code and cause compilation errors. The errors reported by the Java compiler will be in

relation to the Java code only and so will be useless, and probably confusing, to the novice

programmer who is working with Kenya. They may not be interested in the Java stage at all.

Errors during compilation will therefore signify nothing more useful than "There is a bug in

your program." To aid this situation, the system should make checks for the correctness of the

Kenya program before carrying out the translation. Syntactically incorrect Kenya programs (i.e.

programs that do not conform to the grammar) will generate errors in the lexical analysis and

parsing stages. Error messages are returned to the user at this stage, so incorrect code is not

generated.

However, there may be still be problems with a program which is syntactically correct. The

Dragon book[8] says "A compiler must check that the source program follows both the

syntactic and semantic conventions of the source language. This checking, called static

checking (to distinguish it from dynamic checking during execution of the target program),

ensures that certain kinds of programming errors will be detected and reported." In the Kenya

system two different static checks are considered: uniqueness checks and type checks.

Uniqueness Checks

Variables, constants, functions and types must have unique names in order that the compiler

can tell which the programmer is referring to. For instance, the following Kenya code, although

syntactically correct, should not be considered to be a valid program.

int a;
a = 4;
int a;
a = 6;
print a;

Here two variables with the name "a" have been declared. This error should be reported.

Generating Java from this code blindly, without checking for the uniqueness of identifiers,

would produce Java code that will not compile properly.

 48

It is possible to have variables with the same name in different scopes. A local variable inside a

function may have the same name as a variable in the main body of the program. Any use of the

variable name inside the function body will refer to the local version, leaving the previously

declared version unaltered. Once the program’s execution has left the scope of the function,

references to that variable name will refer to the global version again.

It is also possible to give a field of a class the same name as a global variable. When referring

to the field the programmer will add a qualifier which will distinguish it from the global

variable, as in the following example:

class Dog
{
 int age;
}

Dog rover;
int age;

age = 22;
rover.age = 6;

The possibility of having the same name refer to different variables in these situations must be

taken into account when performing uniqueness checks.

Type Checks

Type checking is the process of analysing a program to ensure that the types of expressions are

consistent. For instance if a variable is declared as being of type int then it should not be

assigned a real value (or a string or any other type). To perform these checks the type checker

needs to keep a record of the type associated with each name and check this type each time the

name is referenced in the program.

Another check which should be made when a variable is declared is that it is assigned a type

which exists. If the programmer declares a variable of a user defined type, then they must also

have defined the type. This check will also pick up simple typographical errors in type names.

 49

Type Checking and Type Inference

There are two possible approaches which can be taken to verify that the types in a program are

correct. One is known as type checking and the other type inference. These are best illustrated

in terms of an example. Say we are checking the following code fragment:

int a;
a = 4 + 5.7;

Let us firstly take a type checking approach. Here, the variable a has been declared as having

type int. We consequently examine the assignment statement. We know that a has type int

so we check that the assignment which is being assigned to a also has type int. For an

addition to have type int both of the addends must also be of type int. First we check 4,

which is an integer as we expect, but then we check 5.7, which is a real number, and therefore

we have a type error.

A type inference approach works the other way around. We expand the expression as far as

possible and find the types of the end nodes, in this case 4 and 5.7, int and real respectively.

These two are added, and so we infer that the result must have type real. This real value is

assigned to a variable, and so this variable should also have type real, but we find that it does

not, and so again we have a type error.

I have chosen to take a type checking approach in implementing the Kenya type checker.

Implementation of the Kenya Type Checker

The parser creates an abstract syntax tree representing the program as described in a previous

section. The code which SableCC produces promotes the use of the Visitor pattern. This means

that a TypeChecker object can be passed to the nodes of the abstract syntax tree in order to

process it without writing any code inside the classes from which the tree is built. This offers

the advantage of being able to alter the implementation of the type checker independently of the

tree. If the grammar of the language is changed and the parser and AST classes regenerated,

then only code in the TypeChecker class needs to be altered to take account of this change,

rather than having to change code distributed throughout a number of different classes.

Each subclass of Node generated by SableCC has a method apply(). This method is void,

(i.e. it does not return a value). Initially this seems to present a problem when trying to write a

 50

type checker as an obvious approach would be to process the nodes of the tree recursively by

calling a method which returned a type. This is especially true if a type inference approach is

taken. However, it is possible to overcome this when using a type checking approach by

including an attribute in the TypeChecker class in which the expected type is stored. The type

checker object is passed to the node to be checked, its type is compared to that which is

expected, and another boolean attribute is set, depending on whether or not the types match.

A record needs to be kept of the type associated with each name referenced in the program.

This is done by constructing a symbol table, and adding an entry to this table each time that a

variable declaration is encountered while traversing the tree. The symbol table is implemented

using a hashtable, and each entry is indexed by the name. The symbol table contains

information about the type associated with each name, and also whether it was declared as a

variable or a constant. It should be ensured that assignments are not made to constant values.

Uniqueness checks are performed by checking that the key does not already appear in the

hashtable before adding a new entry.

When a variable of a type which is a class is defined, as well as noting the type of this variable

in the symbol table, the types of all of the attributes inside the class must also be recorded. This

could be done by including the fully qualified names of all accessible attributes in the symbol

table, but this is an inefficient implementation. It should not be necessary to repeat the

information about the types of attributes in the table every time a variable of a user defined type

is declared, as each of these will have the same set of attributes with the same types, even if

they are assigned different values.

To avoid this, the approach which I have taken is, whenever a new class is defined, to create a

separate symbol table for the scope of that class, and whenever a variable of that type is

declared, to insert a reference to that local symbol table into the global symbol table. When a

lookup is required, the qualified name can be split where the dots appear (as a qualified name

will be of the form varname.attribute), the left hand side used to index the global

symbol table, and the right hand side used to index the class specific one to find the attribute

information. This indirection can be applied recursively so that classes may be nested to any

depth desired by the programmer.

A set of known types is also maintained, so that whenever a declaration is encountered a check

can be made to ensure that the type to be associated with the name is valid.

 51

The User Interface

Although some programmers prefer to edit their code using a text editor like emacs or vi and

run their compiler from the command line, a novice programmer is likely to prefer a more

"friendly" interface. To this end, an Integrated Development Environment should be provided

for Kenya.

Integrated Development Environments

There are many IDEs available for developing programs in languages such as Java, C, C++,

Visual Basic ... They all have many different features, but tend to share a few common key

elements:

• a code editor

• the ability to run the compiler from inside the IDE

• the ability to test and debug the execution of the program

Environments like Microsoft’s Visual Studio[19] and Sun’s Forte[21] offer many other features

like class wizards and graphical resource or user interface editors. These more advanced

features are likely to be confusing for the novice programmer. It would probably be better if an

IDE targeted particularly at new programmers had only the essential features that are necessary

to write, compile, debug and run a program without any other, potentially confusing, bells and

whistles.

The JMac IDE

When the JMac[4] system, which was mentioned in a previous section, was developed, the

main goal of the project was to produce a good IDE. It was originally my intention to use this

IDE for Kenya, simply plugging in the code relevant to parsing and translating the Kenya

language where previously the code for the JMac language was. However, after spending some

time analysing the code for the JMac IDE. I felt that it would probably be easier to write my

own graphical interface from scratch, as it was difficult to work out exactly how the JMac IDE

code worked. This was not because the code was badly written. The large number of different

classes and the fact that the Graphical User Interfaces is event driven, rather than following a

step by step procedural execution, (so there is no real start or end to the program) make it hard

 52

to analyse. Also, the JMac IDE had some features which I thought were unnecessary, such as a

class wizard. By designing my own IDE I could provide exactly the features that I wanted.

The Kenya IDE

I wanted to keep the IDE for Kenya as simple as possible. The main features that are required

are:

• areas in which Kenya and Java code can be edited

• a mechanism for accessing features (either a menu or a toolbar)

• some sort of display of status information

• a window in which to view the output of a running program

• a system to provide help to the user

A lot of existing IDE’s (and other types of software) contain a large number of features. The

way in which people learn new pieces of software tends not to be by reading the manual, but by

trying things out and exploring the software. Because of this, some of the features of a piece of

software are likely never to be discovered by users if they are hidden inside a number of levels

of menus or option dialogs. There is a compromise to be reached, trading off the ease with

which a user can find features against the possibility of presenting them with too much

information and too many options, causing them to become confused or daunted by the

application’s interface. Jeff Raskin discusses such issues at length in his book The Humane

Interface[21].

In the design of the Kenya system, I have tried not to include features which are unessential,

and to only provide one way of doing everything. (Larry Wall, the inventor of Perl[22] has a

famous adage "There’s always more than one way to do it". Perl is a notoriously difficult

language to master.) This should make it easier for the user to learn all of the features, and

never to find themselves thinking "I wonder if I’m doing this the right way, perhaps another

way would be better ...". Having only a relatively small number of operations that the user can

perform means that all of the features can be presented on the user interface without it

becoming cluttered or confusing.

I designed the interface which is shown below to address these issues. It has been created using

components from the Java Swing classes. The user can swap between editing the Kenya or Java

versions of their code, which are displayed in tabbed panes. All of the operations available

 53

(opening a file, compiling the code ...) are given buttons on a tool bar. At the bottom of the

window there is a box in which status messages are displayed, giving the status of program

compilation etc.

When a program is executed, another window is opened showing the output which it produces.

I wanted to keep the execution of the program inside the Kenya system to give a more

homogenous feel to development. When developing with something like Sun’s JDK for Java,

the code is edited in one program, compiled using a command line compiler, and then run either

on the console or showing its own windows. This means the programmer has to switch between

different windows and tools depending on what they want to do. Although this allows the more

advanced programmer to use their own favourite tools for each part of the development

process, customising the way that they work, it is less appropriate for a novice.

 54

This is the output window, showing the execution of a program. The box at the bottom of the

window allows data to be entered for programs that require user interaction.

Although people are less inclined to read manuals than they once were, there is still a

requirement for good support documentation and this may more usefully be supplied in the

form of online help. Such documentation is particularly valuable in a programming

environment, as a language reference can be provided in which programmers can quickly look

up syntax etc. A Java developer will be likely to keep a web browser window open on the API

documentation page[23] as they work, and programmers working with Microsoft’s libraries find

the MDSN[24] references invaluable. As the Kenya IDE is targeted toward a specific

programming language, such reference material can be provided for access inside the same

interface, meaning that a network connection is not necessary to access the documentation. The

only disadvantage with this is that any updates made to the documentation will be slow to

propagate to users.

 55

This is an example of the help window, where users can find references on the system and the

language.

 56

 57

Evaluation

In this section the results of tests performed on the language and the development environment

will be presented.

Testing the Language

The Kenya language was designed to be used by novice programmers to solve the sorts of

problems set in introductory programming courses. Solutions to a selection of the exercises set

for the first year computing laboratories[25] at Imperial College have been coded in Kenya.

The code for these solutions is given in Appendix C along with their translations to Java.

The fact that solutions to these exercises can be coded in Kenya shows that it would be possible

to use it for teaching a first year programming course with similar exercises.

Exercises

Star Triangle

The object of this exercise is to draw a triangle of stars (asterisks) on the screen with one star at

the top and ten at the bottom. This demonstrates the use of textual output, integer variables and

for loops.

Fibonacci

The object of this exercise is to calculate the nth term of a Fibonacci sequence where n and the

two starting terms (positions 0 and 1) are given by the user. This demonstrates the definition

and use of a recursive function, conditional statements and getting input from the user.

Put Base

The object of this exercise is to produce a program which outputs a given number in a given

base. This demonstrates the use of a void function and the mathematical modulus operator.

 58

A comparison of the amount of code which needs to be written (in terms of the number of

characters) between Kenya, Turing and Java is given below. Comments were removed from all

the programs before measuring their size so that only executed code was taken into account.

Exercise Kenya Tur ing Java

Star Triangle 89 chars 242 chars 259 chars

Fibonacci 519 520 734

Put Base 400 507 641

The size of programs to solve different exercises in different languages

In all cases it can be seen that Kenya is at least as concise as either of the other languages. This

is good as it points to Kenya being a simple language with no unnecessary syntax, which was

one of the key design goals.

The newly designed Kenya does posess many of the qualities of a good teaching language, and

fulfils the above aims to a high degree. It is of course not possible to say that Kenya is a good

teaching language without it being used to teach a novice programmer or an introductory

programming class. Unfortunately, at this stage in the year there are hardly any novice

programmers in the department, due to the college’s highly effective teaching (and the threat of

exams!) and so it was difficult to test it "in the field". Also the environment has not been

developed to be sufficiently robust to give to a class for laboratory work. It is intended only to

demonstrate the possibilities of working with the language.

The Language Implementation

The implementation of the Kenya language produced in this project is not quite in line with the

original specification. A couple of extra restrictions were added in order to fix some of the

shift/reduce errors encountered while developing the grammar for the language. The grammar

had to be changed at several points during the development of the translator and the type

checker in order that the necessary parts of the data structure were available from particular

nodes in the tree (mostly this was achieved by "flattening" productions).

With the pressure of time mounting towards the end of the project, two compromises were

necessary. When a function call is made, the keyword call must be placed in front of the

 59

name of the function. When a logical not operator is applied, the expression to which it applies

must be in brackets, even if it only consists of one term. Also, unfortunately during the

development of the grammar, the unary minus operator was accidentally omitted, and so is not

present in this implementation. If further development is done on an implementation of Kenya,

work should be undertaken to correct the grammar so that the language can be used exactly as it

was designed without these restrictions.

Apart from these points, the implementation allows full use of the language as it was designed.

In all the tests carried out, the translator produced correct Java code from correct Kenya

programs.

The Kenya language is designed to be as simple as possible whilst still being useful. This

means that some "shortcuts" used by more experienced programmers (for example the use of

the increment operator) are not provided. As the translator produces Java code directly related

to the Kenya code written, the increment operator is not used in the Java code (except in the

one case of modifying the index variable in a for loop). This may not be the code that a Java

programmer would write, but it is clear what the code does in relation to the Kenya code.

An interesting point to consider is whether the translator should perform any optimisations. For

instance in the above case the translator might come across:

 a = a + 1;

in the Kenya code. The current system would write out exactly the same statement in the Java

code, but Java has an increment operator, so if the translator is to follow the rule of generating

the code that a human Java programmer would write then it should possibly generate the

shorter:

 a += 1;

or even

 a++;

Taking account of these cases would add complexity to the design of the translator, as the

identifier used in the right hand side of the expression needs to be matched with that on the left.

This is something to be considered as a future improvement to the system.

 60

Another optimisation which might be made is that of constant folding, i.e. if the result of an

expression can be computed at compile time rather than having to be left to be computed at

runtime this will save on the required computation when the program is run. This technique

might be applied if the following code is encountered:

 const int secondsInDay = 60 * 60 * 24;
 const real pi = 22.0 / 7.0;

In both of these cases the value to be assigned to the constant can be calculated at compile time.

It is difficult to say whether it should be done at translation time. In the first case, the fact that

the multiplication is written out helps to assure the programmer that the value is correct. In the

second case, it is more debatable. Most compilers will do constant folding when generating

executable code, and so there should not be a speed increase associated with calculation of the

value at translation time. However, if the code was:

 real diameter = 23.7;
 real radius = diameter / 2;

then not all of the operands of the division are real numbers, and a type conversion needs to be

applied to the 2 before the calculation can be done. The compiler will either add in such a

function so that the expression becomes something like

 radius = diameter / int_to_real(2);

or it will rewrite the value 2 as 2.0 . Perhaps this should be done at translation time, as the

division of a real by an integer is a type mismatch, and maybe the programmer should know if

the compiler is going to have to do something to fix their code so that it works (especially if it

has a computational cost, as with a function call). This is not done in the current Kenya system,

and it just allows through arithmetic with mixed integer and real terms and assumes the

compiler will deal with it.

Testing the Development Environment

The software developed in this project provides a development environment for writing Kenya

programs, checking their correctness and translating them into Java. This tool was written in

Java, and the code comprises just over 30,000 lines of source code. Approximately 20,000 lines

of this code was generated by SableCC to create the lexical analyser, the parser and the classes

which represent the different nodes in the abstract syntax tree.

 61

Responsiveness

As the code for this tool is quite large, I decided not to create all of the objects when the

application starts up, but to put off creating objects and loading classes until they were needed

(load on first use). This is possible as Java supports dynamic class loading. Doing this

decreases the amount of time that the user has to wait when starting the application. It does

mean, however, that the user will experience a short delay the first time that they activate a

certain feature, for instance the first time they parse a piece of code or access the help. This

delay does not occur on repeated use of these features as the classes have already been loaded

and initialised. In no case is the delay more than a second or two, and this is deemed acceptable

for general use.

Running the Kenya system on a machine with a 300MHz Pentium II processor, Redhat Linux

v6.2 and the IBM Java Virtual Machine, the time taken to parse, type check and translate one of

the programs from the exercises given above averages approximately 0.5 seconds. This time is

much smaller than the time taken to compile the Java code, which averages around 5 seconds.

The delay added to producing running code by having to translate it from Kenya to Java is

therefore negligible.

Usability

Several students of the Department of Computing at Imperial College were given the system to

test. (These students were actually quite experienced programmers, rather than novices, but

their experience was considered valuable in assessing the usability of the system). They were

given the user manual and the set of example programs which are included in the appendices of

this report. None of the students experienced any difficulty in writing a simple program in

Kenya, translating it to Java, compiling and running it.

The error messages produced by the type checker (discussed further below) seemed sufficient

for the users to identify and correct simple errors in their programs. It was mentioned that it

would be nice to have the location of the error highlighted in the editing window.

The view was expressed that it would be nice to have automatic indentation in the editing

windows, and that indenting the Java code in a different way might make its function clearer.

These are slightly more important than just cosmetic changes, but indentation is quite personal

to individual programmers.

 62

Some concerns were raised over consistency between representations of the program in the

system. If the Kenya code is edited does it invalidate then Java version? If the execute button is

pressed, which version of the code is run? These issues would need to be addressed before

deploying the system in a laboratory environment.

Error Reporting

Some examples of errors detected by the type checker are shown below. In the first case a

variable called "Name" has been declared as a string, but has had an integer assigned to it. This

is an example of a type check.

 63

In the next example, two variables are declared with the same name. This is not allowed as the

machine will not know which of the two variables the programmer is referring to. This is an

example of a uniqueness check.

The information that the system provides about errors in programs is probably not sufficiently

detailed at the moment to enable novice programmers to debug their programs easily and fully.

The lexical analyser and parser used in this project are generated automatically from the

grammar. Although this does not mean that it is not possible to change the way that they report

errors, if changes are made they are overwritten the next time that the parser generator is run

(this needs to be done every time that a change is made to the grammar). Once the grammar has

been completely finalised and there is no need to regenerate the analysis code, changes could be

made to provide more friendly error messages.

One of the major failings in terms of debugging messages is that it has not been possible to

report the line numbers of semantic errors. When the parser creates the abstract syntax tree

representing the program it does not record in each node the line number on which the

production which generated it was found. The data stored in a Node could be altered, and the

parser changed to record line numbers as the code is analysed, but this would require fairly

large changes to the parser. Again this would only be possible after the parser had been

generated for the last time, and would be difficult as the parser was designed by someone else,

and so some significant reverse engineering would be required.

 64

 65

Conclusions

In this section the results of the project will be reviewed to see how far they fulfil the initial

aims of the work.

The overall goals of the project were:

• To examine the teaching of programming to first year students

• To consider the qualities of a language and a technique for teaching programming to

novices

• To design a language having such qualities

• To implement an environment for the development of programs in this language

Examination of Teaching Languages/Techniques

In considering the way in which programming is taught to students at the beginning of their

Computing degree, it was noted that most important is that the students learn the fundamental

principles of program design and think clearly about the techniques and algorithms that they are

using to solve problems. They should not be hindered unnecessarily by having to contend with

complicated syntax in the language they are using.

At the same time, it was recognised that students often become frustrated by being made to

learn what they regard as "toy" languages with no real commercial application. In view of this,

in designing an approach for teaching programming, it must be taken into consideration how

easy it is to progress from the teaching language to other, more sophisticated and commericially

oriented languages. The majority of students studying Computing at Imperial College consider

Java to be the language that they should be being taught in order for them to be employable

Software Engineers on completion of their education.

This examination, along with consideration of the system currently being used to teach

programming to first year students at Imperial College, revealed that there were definitely some

improvements which could be made in order to increase the ease with which a "commercial"

language might be learnt whilst maintaining a focus on allowing the fundamental principles of

programming to be taught. These are essential if the student is to develop into a good

 66

programmer who can work with a number of different languages to express these underlying

techniques and ideas.

Language Design

The strengths and weaknesses of available teaching languages were examined in detail and the

qualities which would be desirable in a new language defined. The Kenya language was

designed trying to incorporate as many of these features as possible, and leaving out anything

that seemed unduly complex or confusing for the novice programmer. The other main

consideration in designing the language was to maintain a similarity with Java where the Java

syntax seemed sufficiently clear and simple. When the student moves on to programming in

Java at a later stage, they should not have to learn a completely new set of keywords and

syntax.

Tests were carried out to determine whether it is possible to write programs in Kenya to solve

the sorts of problems given to students in an introductory programming class. Although it was

not easy to test how useful Kenya is in teaching first year programmers (or fourth year

programmers impersonating first year programmers) to solve such problems, example programs

demonstrate that it is possible to solve the problems using the language.

Translation

As well as a language design, an approach for teaching with this language was developed. This

approach is to provide an automatic translation of the Kenya program written by the student

into a Java program which performs the same function. The goals for the Java code generated

by the system were that it should:

• be correct

• be clear and clean

• be self-contained

• not appear too "mechanical", i.e. it should appear as "human generated" as possible; no

redundant code; no extra semicolons, brackets or braces

For all the cases tested, the translation of a valid Kenya program produced valid Java code

which compiled and performed the intended function of the Kenya program. However, "proof

 67

by example" is not a rigorous proof that all valid Kenya programs will be translated to valid

Java programs by the software.

To verify that this is indeed the case would require specifying the operational semantics of both

Kenya and Java, and showing that both programs result in the same changes of state.

Unfortunately I currently have neither the skills, knowledge nor time to undertake such an

exercise.

Clarity and cleanliness of code is a somewhat subjective thing. There are varying opinions on

what is considered to be good code. A very experienced programmer may prefer code that is

concise, and therefore quicker for them to read and appreciate. Other programmers may prefer

code which provides a more verbose description of what is going on.

All the Java code that is generated by the Kenya system is self contained (i.e. requires no extra

classes to be imported) apart from the code generated from input functions like readInt().

The Development Environment

Novice programmers cannot be expected to work effectively with command line tools. Their

learning experience will be greatly enhanced if they are provided with a development

environment which helps them to write programs effectively. A development environment for

Kenya was designed and implemented as part of this project. The main goals for the design of

the environment were:

• it should provide everything the programmer needs to write and test programs

• it should provide as much information as possible to users about problems with their code

• it should be easy to use

• it should not provide excessive or insufficient functionality

In terms of the basic key components of a development environment, the Kenya environment

provides an editing area for writing code, and a facility to compile code (after Kenya code has

been translated to Java) and execute it all inside the same environment.

The code editor currently lacks features such as syntax highlighting (automatically colouring

keywords to distinguish them from variable and type names etc) and auto indenting. These

would be nice features to have if the editor was going to be used for serious programming as

 68

they make it much easier to see the form and structure of the code which is being worked on.

The environment developed in this project was intended to demonstrate that development with

the Kenya language is possible. The fact that these features are missing at this stage is not a

major failing, but they should be added if further work is done on the project.

Other features which might be seen as being missing are the ability to load and save Java code

(rather than Kenya code) or to change the package name after it has been set. There will

inevitably be extra features that people will want added to a development environment, and

these could be worked on further in future.

The type checker works quite well, and will detect whether the type of the expression on the

right hand side of an assignment matches the type of the variable to which the assignment is

being made. It also reports the use of types which have not been defined, and the repeated use

of type or variable names.

Currently any compiler messages generated by the GJ compiler are passed straight back to the

user without being processed. If it were possible to add line number tags, then it would be much

better if the line number reported in a compiler error could be matched to the line of Java which

caused it, and then that line be mapped back to the line of Kenya which generated it. This

would associate any compiler errors directly with the Kenya. This would be better than the

current situation, as Kenya users should not have to concern themselves with the Java stage

unless they wish to.

Overall this project has yielded some insights into various aspects of teaching and learning

programming. A language and an initial version of a development environment have been

designed and implemented. Some areas have been identified on which further work would need

to be done before the language could be used in a laboratory environment. These are detailed in

the next section.

 69

Further Work

There are a number of extensions which could be made to this project. These fall broadly into

two categories: small, incremental improvements to the development environment, and larger

developments, which might well constitute a project in their own right.

Small Developments

• Improvements to the robustness of the IDE - if Kenya were to be used in a classroom

environment, more work would have to be done to make sure that it stood up to the

rigours of laboratory use.

• The provision of file handling in Kenya - file handling is a fairly fundamental thing to

want to do, allowing programs to be run with larger amounts of data than can be easily

input by hand.

• The addition of graphical output to Kenya - Java’s Swing libraries make it relatively

easy to produce graphical user interfaces for programs, and it might be possible to

provide the same sort of functionality in Kenya.

Larger Developments

• A step through debugger - allowing users to step through the execution of their program

one instruction at a time, and to examine the contents of variables as they do so, is very

valuable when debugging. This would probably mean creating an interpreter for Kenya

code rather than translating it to Java, compiling and runnning on the Java virtual

machine.

• Improvements to the error repor ting - errors are currently reported in terms of

unexpected tokens, incorrect types etc. It would be interesting to try and provide error

reporting which identified the cause of the problem, not just the symptoms.

 70

 71

References

1. Sun Microsystems, The Source for Java(TM) Technology http://java.sun.com

2. Holtsoft, Turing and Object-Oriented Turing homepage http://www.holtsoft.com/turing

3. Microsoft homepage http://www.microsoft.com

4. Lam, Y.K. IDE for Beginning Java Programmers 2000

5. BlueJ, BlueJ - Teaching Java http://www.bluej.org

6. Motil, J. and Epstein D. JJ : a Language Designed for Beginners (Less Is More) available at

http://www.publicstaticvoidmain.com

7. Bailey, R., Language Processors 1998, Imperial College

8. Aho, A.V., Sethi, R. and Ullman, J.D. Compilers - Principles, Techniques and Tools 1986

Addison Wesley.

9. The Lex and Yacc page http://www.combo.org/lex_yacc_page/

10. JGuru ANTLR website http://www.antlr.org

11. Moog, T. PCCTS resources and Notes for New Users http://www.polhode.com/pccts.html

12. Sable Research Group SableCC 2.16.2 Homepage http://www.sablecc.org

13. Gamma et al Design Patterns 1995, Addison Wesley

14. Jackson, C. and Tomlins, A. Java Generics 1999,

http://www.doc.ic.ac.uk/~caj97/projects/course/java-generics/report

15. Java Developer Connection Prototype for Adding Generics to the Java(TM) Programming

Language http://developer.java.sun.com/developer/earlyAccess/adding_generics/

16. Bracha, G., Odersky, M. , Stoutamire, D. and Wadler, P. GJ, extending the Java language with

type parameters 1998

17. Pooley, R. Extended Bachus Naur Form

http://www.cee.hw.ac.uk/~rjp/Coursewww/Cwww/EBNF.html

18. Eckel, B. Thinking In Java (2nd Edition) 2000, Prentice Hall

19. Microsoft Visual Studio http://msdn.microsoft.com/vstudio/

20. Sun Microsystems Forte http://www.sun.com/forte/ffj/overview.html

 72

21. Raskin, J. The Humane Interface 2000, Addison Wesley

22. Wall, L. et al Programming Perl 2000, O’Reilly

23. Sun Microsystems Java 2 Platform SE v1.3 http://java.sun.com/j2se/1.3/docs/api/

24. Microsoft MSDN Online Library http://msdn.microsoft.com/library/

25. Imperial College Dept of Computing 1st year lab exercises

http://www.doc.ic.ac.uk/lab/cs1/lab_specs.html

 73

Appendix A - A Grammar for Kenya

The grammar for Kenya for use with SableCC looks like:

Package minijava;

Helpers
 letter = [’A’..’Z’] | [’a’..’z’];
 digit = [’0’..’9’];
 cr = 13;
 lf = 10;
 point = ’.’;
 not_cr_lf = [[32..127] - [cr + lf]];
 space = ’ ’;

Tokens
 boolean = ’boolean’;
 char = ’char’;
 int = ’int’;
 real = ’real’;
 string = ’string’;
 void = ’void’;

 klass = ’class’;
 const = ’const’;
 print = ’print’;
 println = ’println’;
 if = ’if’;
 else = ’else’;
 while = ’while’;
 return = ’return’;
 switch = ’switch’;
 case = ’case’;
 break = ’break’;
 default = ’default’;
 for = ’for’;
 to = ’to’;
 step = ’step’;
 decreasing = ’decreasing’;
 call = ’call’;

 true = ’true’;
 false = ’false’;

 and = ’and’;
 or = ’or’;
 xor = ’xor’;
 not = ’not’;

 74

 readint = ’readInt()’;
 readreal = ’readReal()’;
 readstring = ’readString()’;

 identifier = letter (letter | digit)*;
 stringliteral = ’"’ [not_cr_lf - ’"’]* ’"’;

 l_parenthese = ’(’;
 r_parenthese = ’)’;
 l_brace = ’{’;
 r_brace = ’}’;
 l_bracket = ’[’;
 r_bracket = ’]’;
 semicolon = ’;’;
 colon = ’:’;
 comma = ’,’;
 dot = point;

 plus = ’+’;
 minus = ’-’;
 times = ’*’;
 divide = ’/’;
 power = ’^’;
 mod = ’%’;
 less = ’<’;
 lessequal = ’<=’;
 greater = ’>’;
 greaterequal = ’>=’;
 equal = ’==’;
 notequal = ’!=’;
 assign = ’=’;

 intnumber = digit+ ;
 fpnumber = digit+ point digit+;

 new_line = cr | lf | cr lf;

 blank = space*;

 comment = ’//’ (letter | digit | space)* (cr | lf | cr lf);

Ignored Tokens
 blank , new_line , comment;

Productions

 statements =
 {list} statement statements |
 {empty} ;

 75

 statement =
 {dec} declaration |
 {functioncall} function_application semicolon |
 {assignment} field_access assign expression semicolon |
 {if} if l_parenthese bool_expression r_parenthese
[block1]:block else? [block2]:block? |
 {while} while l_parenthese bool_expression r_parenthese
block |
 {return} return expression? semicolon |
 {switch} switch l_parenthese expression r_parenthese
switch_block |
 {for} for decreasing? name assign [exp1]:expression to
[exp2]:expression step? [exp3]:expression? block |
 {break} break semicolon |
 {print_str} print expression semicolon |
 {println_str} println expression semicolon;

 block = l_brace statements r_brace;

function_application = call name l_parenthese actual_param_list
 r_parenthese;

actual_param_list = {list} actual_param_list comma expression |
 {exp} expression |
 {empty};

 switch_block = l_brace possible_case* r_brace;

 possible_case = switch_label block;

 switch_label =
 {case} case expression colon |
 {default} default colon;

 declaration =
 {class_dec} klass identifier l_brace declaration* r_brace |
 {func_dec} type identifier l_parenthese formal_param_list?
r_parenthese block |
 {const_dec} const type identifier initialiser? semicolon |
 {var_dec} type type_param? identifier array_access*
initialiser? semicolon;

 formal_param_list = type_name comma_type_name*;

 type_name = type identifier;

 comma_type_name = comma type_name;

 initialiser = assign expression;

 booleanliteral =
 {true} true |
 {false} false;

 76

/********************
 Types
********************/

 type =

 {basic_type}
 basic_type |

 {reference_type}
 reference_type;

 basic_type =

 {char}
 char |

 {int}
 int |

 {real}
 real |

 {string}
 string |

 {boolean}
 boolean |

 {void}
 void;

 reference_type =
 {class_type}
 class_type;

/********************
Variable Declarations
********************/

 type_param = less type_param_list greater;

 type_param_list = type comma_type*;

 comma_type = comma type;

/********************
 Expressions
********************/

 expression =
 {boolexp} bool_expression;

 77

 math_expression =
 {term} term |
 {plus} math_expression plus term |
 {minus} math_expression minus term ;

 term =
 {factor} factor |
 {mult} term times factor |
 {div} term divide factor |
 {mod} term mod factor |
 {power} term power factor;

 factor =
 {function} function_application |
 {number} number |
 {stringliteral} stringliteral |
 {readint} readint |
 {readreal} readreal |
 {readstring} readstring |
 {fieldaccess} field_access |
 {expression} l_parenthese bool_expression r_parenthese;

 number = {i} intnumber |
 {f} fpnumber;

 bool_expression =
 {term} bool_term |
 {mathexp} math_expression |
 {or} bool_expression or bool_term;

 bool_term =
 {factor} bool_factor |
 {and} bool_term and bool_factor;

 bool_factor =
 {literal} booleanliteral |
 {compare} [lhs]:math_expression comp_operator
[rhs]:math_expression |
 {negate} not l_parenthese bool_expression r_parenthese;

/********************
 Names
********************/

 field_access =
 {array} name array_access+ |
 {scalar} name;

 78

 name =

 {simple_name}
 simple_name |

 {qualified_name}
 qualified_name;

 simple_name =
 identifier;

 qualified_name =
 field_access dot identifier;

 array_access = l_bracket math_expression r_bracket;

 79

Appendix B - Some Example Kenya
Programs and Their Translations to Java

Hello World

Kenya

print "Hello World!";

Java

package examples;

public class Program {

 public static void main(String[] args) {
 System.out.print("Hello World!");
 }
}

Using Variables

Kenya

int a = 2;
int b = 3;
println a + b;

string h = "Hello";
println h;

Java

package examples;

public class Program {

 public static void main(String[] args) {

 int a = 2;
 int b = 3;
 System.out.println(a + b);
 String h = "Hello" ;
 System.out.println(h);
 }
}

 80

Using Arrays

Kenya

int a[10];
a[1] = 5;
println a[1];

string b[2][2];

//arrays are indexed from zero
b[0][0] = "Hello";
println b[0][0];

Java

package examples;

public class Program {

 public static void main(String[] args) {

 int [] a = new int [10];
 a[1] = 5;
 System.out.println(a[1]);
 String [][] b = new String [2][2];
 b[0][0] = "Hello" ;
 System.out.println(b[0][0]);
 }
}

 81

Using a While Loop

Kenya

int i = 1;

while (i <= 10)
{
 println i;
 i = i + 1;
}

Java

package examples;

public class Program {

 public static void main(String[] args) {

 int i = 1;
 while (i <= 10)
 {
 System.out.println(i);
 i = i + 1;
 }
 }
}

 82

Using a For Loop

Kenya

int i;

for i = 1 to 10
{
 println i;
}

for i = 2 to 10 step 2
{
 println i;
}

for decreasing i = 10 to 2
{
 println i;
}

Java

package examples;

public class Program {

 public static void main(String[] args) {

 int i;

 for(i = 1; i <= 10; i ++)
 {
 System.out.println(i);
 }

 for(i = 2; i <= 10; i += 2)
 {
 System.out.println(i);
 }

 for(i = 10; i >= 2; i--)
 {
 System.out.println(i);
 }
 }
}

 83

Using a User Defined Data Type

Kenya

class Person
{
 string name;
 int age;
}

Person me;
me.name = "Robert";
me.age = 22;

println "My name is " + me.name;
println "I am " + me.age + " years old";

Java

package examples;

public class Program {

 public static void main(String[] args) {
 Person me = new Person();
 me.name = "Robert";
 me.age = 22;
 System.out.println("My name is " + me.name);
 System.out.println("I am " + me.age + " years old");
 }
}

class Person
{
 String name;
 int age;
}

 84

Using a Conditional

Kenya

int a = 2;

if (a == 2)
{
 println "a equals 2";
}
else
{
 println "a does not equal 2";
}

Java

package examples;

public class Program {

 public static void main(String[] args) {

 int a = 2;

 if (a == 2)
 {
 System.out.println("a equals 2");
 }
 else
 {
 System.out.println("a does not equal 2");
 }
 }
}

 85

Using a Switch

int a = 2;

switch (a)
{
 case 1 : { print "One"; break; }
 case 2 : { print "Two"; break; }
 default : { print "Many"; break; }
}

Java

package examples;

public class Program {

 public static void main(String[] args) {

 int a = 2;
 switch (a) {
 case 1:
 {
 System.out.print("One");
 break;
 }
 case 2:
 {
 System.out.print("Two");
 break;
 }
 default :
 {
 System.out.print("Many");
 break;
 }
 }
 }
}

 86

Defining and Applying a Function

Kenya

// The definition

int triple(int n)
{
 return n*3;
}

// The application

int a = 2;
int b = call triple(a);

Java

package examples;

public class Program {

 public static void main(String[] args) {

 int a = 2;
 int b = triple(a);
 }

 static int triple(int n) {
 return n * 3;
 }
}

 87

Appendix C - More Complex Example Kenya
Programs and Their Translations to Java

Star Triangle

This program prints a triangle of stars on the screen.

Kenya

int a;
int b;

for a = 1 to 10
{
 for b = 1 to a
 {
 print "*";
 }

 println "";
}

Java

package star;

public class Program {

 public static void main(String[] args) {

 int a;
 int b;
 for(a = 1; a <= 10; a ++)
 {

 for(b = 1; b <= a; b ++)
 {
 System.out.print("*");
 }

 System.out.println("");
 }
 }
}

 88

Fibonacci

This program generates the nth number in the Fibonacci sequence starting with the given terms.

Kenya

int fibonacci(int first, int second,int N)
{
 if (N == 0) {
 return first;
 }
 if (N == 1) {
 return second;
 }
 else {
 return call fibonacci(second, first+second, N-1);
 }
}

int number;
int first;
int second;

print "Input a Fibonacci series position: ";
number = readInt();
print "Input the first and second starting values: ";
first = readInt();
second = readInt();
print "Fibonacci number at position " + number + " in series = "
+ call fibonacci(first , second , number);

Java

package fibonacci;

import kenya.io.IntReader;

public class Program {

 public static void main(String[] args) {

 int number;
 int first;
 int second;
 System.out.print("Input a Fibonacci series position: ");
 number = IntReader.read();
 System.out.print("Input the first and second starting
values: ");
 first = IntReader.read();
 second = IntReader.read();

 89

 System.out.print("Fibonacci number at position " + number
+ " in series = " + fibonacci(first, second, number));
 }

 static int fibonacci(int first , int second , int N)
 {
 if (N == 0)
 {
 return first;
 }
 if (N == 1)
 {
 return second;
 }
 else
 {
 return fibonacci(second, first + second, N - 1);
 }
 }
}

 90

Put Base

This program converts a given decimal number to the given base (1 - 10).

Kenya

void putBase(int number , int base)
{
 if (number < base) { print number; }
 else {
 call putBase(number / base , base);
 println " " + number % base;
 }
}

int number;
int base;

print "Intput an integer in decimal: ";
number = readInt();
print "Input the base you want it expressed in: ";
base = readInt();
print number + " in base " + base + " is: ";
call putBase(number, base);

Java

package putbase;

import kenya.io.IntReader;

public class Program {

 public static void main(String[] args) {

 int number;
 int base;
 System.out.print("Intput an integer in decimal: ");
 number = IntReader.read();
 System.out.print("Input the base you want it expressed in:
");
 base = IntReader.read();
 System.out.print(number + " in base " + base + " is: ");
 putBase(number, base);
 }

 static void putBase(int number , int base)
 {
 if (number < base)
 {

 91

 System.out.print(number);
 }
 else
 {
 putBase(number / base, base);
 System.out.println(" " + number % base);
 }
 }
}

 92

 93

Appendix D – A Survey of People's
Experiences of Learning Programming

To find out which features of a language make it easy to learn programming with, a survey was

conducted of undergraduate students at different universities to discover their experiences of

being taught programming.

A student from the University of Durham wrote "I’d hate to be thrown straight into object-

oriented programming." It can be argued that object-oriented programming is a viable

introductory programming style, depending on the method by which it is taught. To make this

an effective method would probably involve any actual programming being preceded by a

course in object-oriented design to give a good grounding in the principles of the structure of an

object-oriented piece of software.

A student from University College London wrote "I think the best way of teaching modern

languages is by showing them an abstract class diagram which is directly connected to

whatever programming statements the user types in". He advocates the object-oriented

approach to programming, but with the caveat that "pointers and references get very mind-

bending at times!" This perhaps presents a case for structured programming or the use of a

language closer to Java than to C++, Java not having explicit pointer types, therefore avoiding

some of the confusion caused by the subtleties of pointers and references.

A student from the University of Edinburgh wrote "I actually learned to program with Basic"

... "What made Basic so understandable was the very simply syntax of everything: there were

no braces, no special characters at the end of lines, and the commands did pretty much what

you’d expect (you have to agree PRINT "HELLO" is a bit more intuitive then

printf("Hello\n");)." This points out the need for an introductory language to have a

simple syntax so that it is not difficult to understand, and the programmer can concentrate on

their algorithm.

A student from the University of Nottingham wrote "The best [language for teaching

programming] is Visual Basic, I think, due to the intellisense (it finishes it for you, so you don’t

have to remember every object’s property names or methods to the letter), it checks syntax as

 94

you go ... you can build GUIs nice and quick which look good with an intrinsically integrated

IDE with good debugging features.". The merits of endorsing a Microsoft[3] product will not

be argued here. It is true that the Intellisense feature is an aid to programmers, but it is a feature

of the development environment rather than the language. The same can be said of good

debugging features and any sort of graphical builder. Generating incomprehensible code from

mouse clicks is probably not desirable in teaching programming.

 95

Kenya User Guide

System Requirements

Currently Kenya only runs on Linux. As it is written entirely in Java, a conversion to other

platforms should be relatively easy, and may be done in the future.

In order to take advantage of generics, Kenya uses the GJ compiler rather than the standard

Java compiler. This needs to be installed in order to use Kenya.

Starting Kenya

To start the system, ensure that the directory in which Kenya is installed is in your classpath

and type

java Kenya

 96

The Main Window

The main window looks like this:

The buttons in the toolbar allow you to do the following:

• Open a Kenya file

• Save a Kenya file

• Parse Kenya code to generate Java

• Compile Java code

• Execute compiled Java code

• Open the online help

In the middle of the window are two tabbed editing areas, one for Kenya and one for Java. You

can switch between the areas by clicking on the tabs at the top.

 97

The messages box at the bottom is where any messages will be displayed about errors in your

code, compiler messages etc.

Your First Kenya Program

Traditionally the first program that people write in any language is the Hello World program.

This prints out Hello World! on the screen. Lets see how to write and run this in Kenya.

First make sure that the Kenya editing area is selected, and type into it the following code:

print "Hello World!";

Now click on the Parse button. You will be asked to enter a package name. A package is what

Java uses to keep all of the files associated with a particular program together. Enter the name

HelloWorld into the box and click ok.

After a second or so, the display should change to show the Java area containing the Java code

which the system has generated. Now click on the Compile button and after a few seconds you

should see a "Compiled OK" message box. Click ok in this window.

You can now run the program by clicking the Execute button. An output window will pop up

and you should see the words Hello World! in the window.

Close the window and return to the Kenya code. You can now save your Kenya program by

clicking on the Save button. You will be presented with a standard file selection dialog box.

Choose a suitable directory to save the file in, type the name HelloWorld.k into the selection

box and press return.

