

Writing Embedded Domain
Specific Languages in Java

Robert Chatley and Mike Hill
rchatley@google.com mike@mandu.co.uk

Large projects have lots of code

Intention is often unclear

“…a good programmer in
these times does not just

write programs … a good
programmer does language

design, though not from
scratch, but building on the
frame of a base language”

- Guy Steele Jr.

Different domains have
specific languages

Internal vs External

Make use of factories

class Coffee {
 Coffee(boolean milk, boolean sugar){
 ...
 }
}
drink = new Coffee(true, true);

class Coffee {
 Coffee(boolean milk, boolean sugar){
 ...
 }
}
drink = new Coffee(true, true);

class Coffee {
 static Coffee withMilkAndSugar() {
 return new Coffee(true, true);
 }
}
drink = Coffee.withMilkAndSugar();

Code to a fluent interface

class Coffee {
 void setMilk(boolean milk){
 this.milk = milk;
 }
}
drink.setMilk(true);
drink.setSugars(2);

class Coffee {
 void setMilk(boolean milk){
 this.milk = milk;
 }
 Coffee withMilk() {
 milk = true;
 return this;
 }
}
drink.setMilk(true);
drink.setSugars(2);

drink.withMilk().withSugars(2);

The Builder pattern…

Order order =
 Order.forDrinks(
 Coffee.black(),
 Tea.withMilk()
)
 .toTakeAway();

order.build();

// or perhaps
order.make();

Order order =
 Order.forDrinks(
 Coffee.black(),
 Tea.withMilk()
)
 .toTakeAway();

drinks = order.build();

// or perhaps
drinks = order.make();

a vararg
method is
nice here

Build or extract layers

Auction Exercise

We've coded up an auction and some
bidders

– Bidders have different strategies
– Refactor bidders so their strategies can

be described as a DSL
– We've provided acceptance tests to keep

you safe

Retrospective
What did you learn?
What went well?
What went badly?
Puzzles?
Ideas?

Feedback
Interesting? Useful?
What could be improved?

Acknowledgments

John Ayres
Paul Carey

Steve Freeman
Nat Pryce

Joe Walnes
Tom White

