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Large projects have lots of code



  

Intention is often unclear



  

“…a good programmer in 
these times does not just 

write programs … a good 
programmer does language 

design, though not from 
scratch, but building on the 
frame of a base language” 

- Guy Steele Jr.



  

Different domains have 
specific languages



  

Internal vs External



  

Make use of factories



  

class Coffee {
  Coffee(boolean milk, boolean sugar){ 
    ... 
  }
}
drink = new Coffee(true, true);



  

class Coffee {
  Coffee(boolean milk, boolean sugar){ 
    ... 
  }
}
drink = new Coffee(true, true);

class Coffee {
  static Coffee withMilkAndSugar() {
    return new Coffee(true, true);
  }
}
drink = Coffee.withMilkAndSugar();



  

Code to a fluent interface



  

class Coffee {
  void setMilk(boolean milk){ 
    this.milk = milk; 
  }
}
drink.setMilk(true);
drink.setSugars(2);



  

class Coffee {
  void setMilk(boolean milk){ 
    this.milk = milk; 
  }
  Coffee withMilk() {
    milk = true;
    return this;
  }
}
drink.setMilk(true);
drink.setSugars(2);

drink.withMilk().withSugars(2);



  

The Builder pattern…



  

Order order =
  Order.forDrinks(
          Coffee.black(),
          Tea.withMilk()
        )
       .toTakeAway(); 

order.build(); 

// or perhaps 
order.make();



  

Order order =
  Order.forDrinks(
          Coffee.black(),
          Tea.withMilk()
        )
       .toTakeAway(); 

drinks = order.build(); 

// or perhaps 
drinks = order.make();

a vararg 
method is 
nice here



  

Build or extract layers



  

Auction Exercise

We've coded up an auction and some 
bidders

– Bidders have different strategies
– Refactor bidders so their strategies can 

be described as a DSL
– We've provided acceptance tests to keep 

you safe



  

Retrospective 
What did you learn? 
What went well?
What went badly?
Puzzles?
Ideas?



  

Feedback 
Interesting? Useful? 
What could be improved?
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